
XL C/C++ for z/VM
1.3

User's Guide

IBM

SC09-7625-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
119.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-09-07
© Copyright International Business Machines Corporation 2003, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. ix

About This Document..xi
Intended Audience..xi
Conventions and Terminology...xi
Syntax, Message, and Response Conventions..xi
Where to Find More Information...xiv

Links to Other Documents and Websites.. xiv

How to Send Your Comments to IBM...xv

Summary of Changes for XL C/C++ for z/VM: User's Guide...................................xvii
SC09-7625-73, XL C/C++ for z/VM, 1.3 (September 2022) .. xvii
SC09-7625-02, XL C/C++ for z/VM, 1.3 (September 2020) .. xvii
SC09-7625-02, XL C/C++ for z/VM, 1.3 (September 2018) .. xvii

Chapter 1. About XL C/C++ for z/VM...1
Differences between XL C/C++ for z/VM and z/OS XL C/C++... 1
The C Language.. 1
The C++ Language..1
Common Features of the C and C++ Compilers.. 2
Class Library... 2
Utilities... 2
Language Environment.. 2
z/VM OpenExtensions..3

OpenExtensions Services...3
Applications with OpenExtensions Services..4
Applications with OpenExtensions Interoperability..4

Softcopy Examples...5

Chapter 2. C Example.. 7
Example of a C Program...7

CCNUAAM... 7
CCNUAAN..8

Compiling, Binding, and Running the C Example.. 8
Non-XPLINK and XPLINK under CMS.. 9
Non-XPLINK and XPLINK under the OpenExtensions Shell... 9

Chapter 3. C++ Examples...11
Example of a C++ Program.. 11

CCNUBRH... 11
CCNUBRC..13

Compiling, Binding, and Running the C++ Example... 15
Non-XPLINK and XPLINK under CMS.. 15
Non-XPLINK and XPLINK under the OpenExtensions Shell... 15

Example of a C++ Template Program..16
CCNUTMP... 16

 iii

Compiling, Binding, and Running the C++ Template Example... 17
Under CMS.. 17
Under the OpenExtensions Shell... 18

Chapter 4. Compiler Options.. 19
Specifying Compiler Options... 19

Specifying Compiler Options Using #pragma options.. 21
Compiler Option Defaults.. 21
Summary of Compiler Options.. 21
Descriptions of Compiler Options..21

Unsupported Compiler Options... 22
Compiler Options with Operational Differences..23

Using the C Compiler Listing..33
Using the C++ Compiler Listing... 33

Chapter 5. Compiler Options under OpenExtensions... 35
Specifying Compiler Options Using c89/cxx... 35
c89/cxx Default Compiler Settings..35
c89 Selectable Compiler Settings... 35

Format.. 35
Description... 36

Feature Test Macros...37

Chapter 6. Runtime Options... 39
Specifying Runtime Options.. 39
Runtime Options Using Language Environment... 39

Chapter 7. Compiling a C/C++ Program...41
Invoking the XL C/C++ Compiler... 41

GLOBAL Command for Using the Language Environment Library.. 41
Syntax of the CC EXEC..41
Specifying the Input File.. 42
Specifying Compiler Options..44
Creating Input Source Files..45
Specifying Output Files.. 45
Valid Input/Output File Types.. 47
Using Include Files...47
Determining If filename Is In Absolute Form.. 49
Using LSEARCH and SEARCH...51

Search Sequences for Include Files..52
With the NOOE option in effect.. 52
With the OE option in effect... 53

Chapter 8. Binding and Running a C/C++ Program...55
Library Routine Considerations... 55
Creating an Executable Program... 55

Language Environment Sidedeck Files and TXTLIBs.. 56
CMOD Options.. 57
Examples.. 59

Using the LOAD and GENMOD Commands... 59
Using the BIND Command...60
Using the LKED Command...61
Using FILEDEF to Define Input and Output Files..61
Preparing a Reentrant Program...61
Linking Modules for Interlanguage Calls...62
Running a Program...62
Making the Runtime Libraries Available for Execution... 62

iv

Making the Language Environment Library Available for VM/CMS... 63
Search Sequence for Library Files... 63

Specifying Runtime Options.. 63
Message Handling..64

Chapter 9. Compiling a C/C++ Program under OpenExtensions..............................65
Compiling with c89/cxx... 65

Compiler Selection... 66
Compiling and Building in One Step with c89/cxx.. 66
Using the make Utility..67

Chapter 10. Binding and Running a C/C++ Program under OpenExtensions............69
Using the c89 Utility to Bind and Create Executable Files... 69
c89 Binder Options.. 69

Binder Options..70
Specifying Runtime Options under OpenExtensions..70
Running under OpenExtensions.. 70

OpenExtensions Application Program Environments... 70
Placing a CMS Application Program Load Module in the File System...70
Running a CMS Module from the OpenExtensions Shell...71
Running an OpenExtensions XL C/C++ Application Executable File from the OpenExtensions

Shell... 71

Chapter 11. Object Library Utility... 73
Creating an Object Library under VM/CMS..73

LINKLOAD EXEC... 74
Object Library Utility Map.. 75

Chapter 12. Filter Utility.. 79
CXXFILT Options.. 79

SYMMAP | NOSYMMAP...79
SIDEBYSIDE | NOSIDEBYSIDE.. 80
WIDTH(width) | NOWIDTH...80
REGULARNAME | NOREGULARNAME..80
CLASSNAME | NOCLASSNAME.. 80
SPECIALNAME | NOSPECIALNAME... 80
Unknown Type of Name... 80

Running CXXFILT under VM/CMS.. 80

Chapter 13. DSECT Conversion Utility...83
DSECT Utility Options.. 83

SECT..84
BITF0XL | NOBITF0XL..84
COMMENT | NOCOMMENT...85
DEFSUB | NODEFSUB...85
EQUATE | NOEQUATE... 86
HDRSKIP | NOHDRSKIP... 88
INDENT | NOINDENT... 88
LOCALE | NOLOCALE.. 88
LOWERCASE | NOLOWERCASE.. 88
OPTFILE | NOOPTFILE... 89
PPCOND | NOPPCOND..89
SEQUENCE | NOSEQUENCE... 89
UNNAMED | NOUNNAMED... 89
OUTPUT.. 90
RECFM...90
LRECL..90

 v

BLKSIZE..90
Generation of C Structures.. 90

Chapter 14. Code Set and Locale Utilities... 95
Code Set Conversion Utilities.. 95

iconv Utility... 95
genxlt Utility..96

localedef Utility.. 97

Chapter 15. OpenExtensions ar and make Utlities...101
OpenExtensions Archive Libraries.. 101
Creating Archive Libraries... 101
Creating Makefiles... 102

Appendix A. IBM-Supplied EXECs.. 103

Appendix B. XL C/C++ Compiler Return Codes and Messages.............................. 105

Appendix C. EXEC Error Messages..107

Appendix D. Runtime Error Messages and Return Codes..................................... 109
perror Messages.. 109
XL C/C++ Runtime Return Codes.. 109

Appendix E. Utility Messages... 111
DSECT Utility Messages...111

Return Codes..111
Messages..111

Appendix F. Layout of the Events File... 115
FILEID Field... 115
FILEEND Field..116
ERROR Field...116

Notices..119
Programming Interface Information...120
Trademarks.. 120
Terms and Conditions for Product Documentation.. 120
IBM Online Privacy Statement.. 121

Bibliography.. 123
Where to Get z/VM Information.. 123
z/VM Base Library..123
z/VM Facilities and Features... 124
Prerequisite Products.. 126
Related Products... 126

Index.. 129

vi

Figures

1. Celsius to Fahrenheit Conversion..7

2. User #include File for Conversion Program..8

3. Commands to Compile, Bind, and Run a C Program under VM/CMS... 9

4. Commands to Compile, Bind, and Run a C Program under OpenExtensions.. 9

5. Header File for the Biorhythm Example (Part 1 of 2)... 11

6. Header File for the Biorhythm Example (Part 2 of 2)... 12

7. z/OS C++ Biorhythm Example Program (Part 1 of 3)... 13

8. z/OS C++ Biorhythm Example Program (Part 2 of 3)... 14

9. z/OS C++ Biorhythm Example Program (Part 3 of 3)... 14

10. Commands to Compile, Bind, and Run a C++ Program under CMS...15

11. Commands to Compile, Bind, and Run a C++ Program under OpenExtensions..................................... 15

12. C++ Template Program (Part 1 of 2)...16

13. C++ Template Program (Part 2 of 2)...17

14. Commands to Compile, Bind, and Run a C++ Template Program under CMS.. 17

15. Commands to Compile, Bind, and Run a C++ Template Program under OpenExtensions.....................18

16. Specifying a CMS Record Input File under VM/CMS (Example 1)... 42

17. Specifying a CMS Record Input File under VM/CMS (Example 2)... 43

18. Specifying a BFS Input File under VM/CMS (Example 1)...44

19. Specifying a BFS Input File under VM/CMS (Example 2)...44

20. Specifying Compiler Options under VM/CMS (Example 1).. 44

21. Specifying Compiler Options under VM/CMS (Example 2).. 45

22. Specifying Compiler Options for BFS Files...45

23. Testing If filename Is In Absolute Form...50

 vii

24. Determining If LSEARCH/SEARCH opt Is BFS Path... 51

25. CMS Commands to Bind and Run a C Program.. 55

26. CMS Commands to Bind and Run a C++ Program..55

27. Example 1 - Using the CMOD EXEC.. 59

28. Example 2 - Using the CMOD EXEC.. 59

29. Example 3 - Using the CMOD EXEC.. 59

30. Example 4 - Using the CMOD EXEC.. 59

31. Using the LOAD and GENMOD commands... 60

32. Running under CMS...64

33. Object Library Utility Map... 76

34. Running the DSECT Utility under CMS..83

35. SIMPLE C...115

36. ERR H...115

37. Sample SYSEVENT file.. 115

viii

Tables

1. Examples of Syntax Diagram Conventions..xii

2. c89 Option and Corresponding Compiler Option... 37

3. Default CMS File Types and BFS Suffixes for Output Files...46

4. Valid Combinations of Source and Output File Types.. 47

5. Include Directive and Resulting File Names...49

6. Examples of Search Order for OpenExtensions... 54

7. CMOD options..57

8. DSECT Utility Options, Abbreviations, and IBM-Supplied Defaults...84

9. Return Codes from the DSECT Utility... 111

10. Explanation of the FILEID Field Layout..116

11. Explanation of the FILEEND Field Layout.. 116

12. Explanation of the ERROR Field Layout... 116

 ix

x

About This Document

This document provides information about using IBM XL C/C++ for z/VM to implement (compile, bind, and
run) C and C++ programs with Language Environment®. It contains guidelines for preparing C and C++
programs to run under z/VM.

This document includes information about the following topics:

• Introduction to IBM XL C/C++ for z/VM
• Differences between IBM XL C/C++ for z/VM and z/OS® XL C/C++
• How to compile, bind, and run a C/C++ program with IBM XL C/C++ for z/VM in the CMS environment of

z/VM
• How to compile, bind, and run a C/C++ program with IBM XL C/C++ for z/VM in the z/VM

OpenExtensions environment

Intended Audience
This information is intended for programmers who want to write C and C++ applications on the z/VM
platform. To use this information, you must have a working knowledge of the C and C++ programming
languages, Language Environment for z/VM, and z/VM OpenExtensions.

Conventions and Terminology
Throughout this document, the following conventions are used:

• XL C/C++ is used to represent IBM XL C/C++ for z/VM.
• z/VM refers to z/VM 7.1 or later.
• VM/CMS is used to represent the CMS environment of z/VM.
• Language Environment is used to represent Language Environment for z/VM.
• OpenExtensions is used to represent the z/VM OpenExtensions environment.

The term filename is used to refer to both files in general, regardless of the specific file system in which
they reside, and also more specifically to refer to the name component of a minidisk or shared file system
file identifier. The intended usage should be clear from the context.

It is often necessary, however, to make a distinction between files that reside in the byte file system,
and those that reside on minidisks or in the shared file system (but not in the byte file system). For
convenience, the former will be referred to as BFS files, and the latter as CMS files.

The term ddname is used to refer to a data definition name. The relation of a ddname to one or more CMS
files is achieved by using the FILEDEF command or for a BFS file by using the OPENVM PATHDEF CREATE
command.

The term FILEDEF is used to refer to the data definition created by the use of the FILEDEF command.

The term PATHDEF is used to refer to the data definition created by the use of the OPENVM PATHDEF
CREATE command.

The term program module is defined as the output of the binder. It is a collective term for program object
and load module.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

© Copyright IBM Corp. 2003, 2022 xi

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xii.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

xii About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

About This Document xiii

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information
This document is intended to be used in conjunction with the following documents:

• z/OS XL C/C++ documents (included in the IBM XL C/C++ for z/VM library)
• Other IBM C/C++ programming documents (included in the IBM XL C/C++ for z/VM library)
• z/VM and z/OS Language Environment documents (included in the z/VM library)
• z/VM OpenExtensions documents (included in the z/VM library)
• z/VM and z/OS Program Management Binder documents (included in the z/VM library)

For more information, see “Bibliography” on page 123.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xiv XL C/C++ for z/VM: 1.3 User's Guide

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 2003, 2022 xv

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xvi XL C/C++ for z/VM: 1.3 User's Guide

Summary of Changes for XL C/C++ for z/VM: User's Guide

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC09-7625-73, XL C/C++ for z/VM, 1.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

Language Environment upgrade
The z/VM Language Environment runtime libraries have been upgraded to z/OS 2.5 equivalence.

The following topic is updated:

• “Object Library Utility Map” on page 75

Miscellaneous updates for z/VM 7.3
The following topics are updated:

• “Differences between XL C/C++ for z/VM and z/OS XL C/C++” on page 1
• “Unsupported Compiler Options” on page 22

SC09-7625-02, XL C/C++ for z/VM, 1.3 (September 2020)
This edition supports the general availability of z/VM 7.2.

SC09-7625-02, XL C/C++ for z/VM, 1.3 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 2003, 2022 xvii

xviii XL C/C++ for z/VM: 1.3 User's Guide

Chapter 1. About XL C/C++ for z/VM

XL C/C++ for z/VM is the language-centered C/C++ application development environment on the z/VM
platform. It is a z/VM-enabled version of z/OS XL C/C++. IBM XL C/C++ for z/VM includes a C/C++
compiler component (referred to as the XL C/C++ compiler) and some C/C++ application development
utilities.

Differences between XL C/C++ for z/VM and z/OS XL C/C++
>XL C/C++ for z/VM does not support the following z/OS XL C/C++ compiler features:

• ASCII support

The associated compiler option is ASCII.
• Assembler code generation

The associated compiler options are EPILOG, GENASM, METAL, and PROLOG.
• Host Performance Analyzer
• IEEE floating-point arithmetic

The associated compiler option is FLOAT(IEEE).
• Interprocedural analysis

The associated compiler option is IPA.

For the complete list of unsupported compiler options, see “Unsupported Compiler Options” on page 22.

Some supported z/OS XL C/C++ compiler options operate differently in XL C/C++ for z/VM. See “Compiler
Options with Operational Differences” on page 23.

The C Language
The C language is a general-purpose, function-oriented programming language that allows a programmer
to create applications quickly and easily. C provides high-level control statements and data types as
do other structured programming languages, and it also provides many of the benefits of a low-level
language.

The C++ Language
The C++ language is based on the C language, but incorporates support for object-oriented
concepts. For a detailed description of the differences between C++ and C, see the
z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147308/$file/cbclx01_v2r5.pdf).

The C++ language introduces classes, which are user-defined data types that may contain data definitions
and function definitions. You can use classes from established class libraries, develop your own classes,
or derive new classes from existing classes by adding data descriptions and functions. New classes can
inherit properties from one or more classes. Not only do classes describe the data types and functions
available, but they can also hide (encapsulate) the implementation details from user programs. An object
is an instance of a class.

The C++ language also provides templates and other features that include access control to data and
functions, and better type checking and exception handling. It also supports polymorphism and the
overloading of operators.

© Copyright IBM Corp. 2003, 2022 1

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf

Common Features of the C and C++ Compilers
The C and C++ compilers offer many features to help your work:

• Optimization support.

The OPTIMIZE compiler option instructs the compiler to optimize the machine instructions it generates
to produce faster-running object code to improve application performance at run time.

• Dynamic link libraries (DLLs) to share parts among applications or parts of applications , and
dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use a definition located in
another executable at run time. You can use both load-on-reference and load-on-demand DLLs. When
your program refers to a function or variable which resides in a DLL, XL C/C++ generates code to load
the DLL and access the functions and variables within it. This is called load-on-reference. Alternatively,
your program can use C library functions to load a DLL and look up the address of functions and
variables within it. This is called load-on-demand. Your application code explicitly controls load-on-
demand DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve system memory usage. DLLs
also offer more flexibility for building, packaging, and redistributing applications.

• Full program reentrancy.
• Locale-based internationalization support derived from the IEEE POSIX 1003.2-1992 standard. Also

derived from the X/Open CAE Specification, System Interface Definitions, Issue 4 and Issue 4 Version
2. This allows programmers to use locales to specify language/country characteristics for their
applications.

• Support for the Euro currency.

Class Library
IBM XL C/C++ for z/VM uses the following thread-safe class library:

• Standard C++ Library, including the Standard Template Library (STL), and other library features of
Programming languages - C++ (ISO/IEC 14882:1998) and Programming languages - C++ (ISO/IEC
14882:2003(E))

The Standard C++ Library includes the following:

• Standard C++ I/O Stream Library for performing input and output (I/O) operations
• Standard C++ Complex Mathematics Library for manipulating complex numbers
• Standard Template Library (STL) which is composed of C++ template-based algorithms, container

classes, iterators, localization objects, and the string class

Utilities
IBM XL C/C++ for z/VM provides the following utilities:

• The CXXFILT utility to map C++ mangled names to the original source.
• The DSECT Conversion Utility to convert descriptive assembler DSECTs into C/C++ data structures.
• The localedef utility to read the locale definition file and produce a locale object that the locale-specific

library functions can use.

Language Environment
IBM XL C/C++ for z/VM exploits the runtime library and common library of base routines available
with z/VM and the C/C++ Language Environment for z/VM (referred to as Language Environment in this
document).

2 XL C/C++ for z/VM: 1.3 User's Guide

Language Environment establishes a common runtime environment and common runtime services for
language products, user programs, and other products.

The common execution environment is made up of data items and services performed by library routines
available to a particular application running in the environment. The services that Language Environment
can provide to your application include:

• Services that satisfy basic requirements common to most applications. These include support for
the initialization and termination of applications, allocation of storage, support for interlanguage
communication (ILC) and condition handling.

• Extended services often needed by applications. These functions are contained within a library of
callable routines, and include interfaces to operating system functions and a variety of other commonly
used functions.

• Runtime options that help the execution, performance tuning, performance, and diagnosis of your
application.

• Access to operating system services. OpenExtensions services are available through the XL C/C++
language bindings.

• Access to language-specific library routines, such as the XL C/C++ functions.

z/VM OpenExtensions
z/VM OpenExtensions (referred to as OpenExtensions in this document) provides capabilities under z/VM
to make it easier to implement or port applications in an open, distributed environment.

OpenExtensions Services
OpenExtensions services are available to XL C/C++ application programs through the C language bindings
available with Language Environment.

Together, OpenExtensions, Language Environment, and XL C/C++ provide an application programming
interface that supports industry standards.

Support for POSIX and UNIX-like interfaces includes:

• OpenExtensions services that include C-language programming interfaces defined by the IEEE POSIX
1003.1 standard (although the fork() function is only partially implemented) and subsets of the draft
1003.1a and 1003.1c standards, as well as OpenExtensions-unique extensions

• OpenExtensions shell and utilities, which provide a UNIX-like user interface and an application
development environment for creating XL C/C++ programs for OpenExtensions, including the following
utilities:
c89

Compile and link-edit XL C/C++ applications
make

Software build and maintenance tool
ar

Create and maintain library archives
• Byte file system (BFS), which provides the POSIX file system

This support offers:

• Program portability (with support for POSIX.1 and POSIX.1a) across multivendor operating systems
• A byte file system (BFS) in z/VM (with support for POSIX.1) including access to data in either CMS

record files or the BFS
• A UNIX-like user interface (with support for POSIX.2) including access to services provided through the

OpenExtensions shell and utilities
• Application threads (with support for a subset of POSIX.1c)
• OpenExtensions extensions which provide z/VM-specific support beyond the defined standards

Chapter 1. About XL C/C++ for z/VM 3

This support is integrated with z/VM and Language Environment for use by both existing VM applications
and for new OpenExtensions applications.

Application developers familiar with UNIX-like environments will find the OpenExtensions shell to
be a familiar C application development environment. Those familiar with existing VM development
environments may find that the OpenExtensions environment can enhance their productivity. For more
information about the OpenExtensions shell and utilities, see z/VM: OpenExtensions User's Guide.

Applications with OpenExtensions Services
To make use of OpenExtensions services, an XL C/C++ program must be an OpenExtensions POSIX XL
C/C++ program with Language Environment runtime option POSIX(ON), or it must use the interoperability
support for OpenExtensions. (See “Applications with OpenExtensions Interoperability” on page 4.)

An XL C/C++ program can make use of OpenExtensions services in one of the following ways:

• The program is invoked from another program, or from the OpenExtensions shell, using spawn() or one
of the exec functions.

• The program is invoked using the POSIX system() call.
• The program is invoked from the CMS command line with the POSIX(ON) override option or through the

OPENVM RUN command.

Functions with dependencies on the OpenExtensions kernel, such as spawn(), or the threading
functions, such as pthread_create() are strictly limited to use within the OpenExtensions POSIX
environment.

Applications with OpenExtensions Interoperability
OpenExtensions interoperability is used to describe the fact that:

• OpenExtensions applications running under POSIX(ON) can access traditional VM services and data.
• Traditional VM applications running under POSIX(OFF) can access the OpenExtensions services that

permit access to BFS data.

For example, for functions such as fopen() and freopen(), the following statement will open a BFS file
named parts.instock:

 fopen("./parts.instock","r")

The next statement will open a CMS record file named PARTS INSTOCK:

 fopen("//parts.instock","r")

Changing the runtime option POSIX(OFF) to POSIX(ON) will affect the environment in which these
functions execute. For example, the following statement will open the BFS file named, if POSIX(ON) is
in effect, and will open the CMS record file if POSIX(OFF) is in effect:

 fopen("parts.instock","r")

Some of the C language functions that use OpenExtensions services can be invoked from applications
running in the non-POSIX CMS environment, as specified with the runtime option POSIX(OFF).

For example, the following statement will open a BFS file named parts.instock whether the application is
running under POSIX(OFF) or POSIX(ON):

 open("parts.instock",O_RDONLY)

For more information on the C language functions available under the OpenExtensions environment that
can be invoked by applications running in the non-POSIX VM environment, see the XL C/C++ for z/VM:
Runtime Library Reference.

4 XL C/C++ for z/VM: 1.3 User's Guide

Softcopy Examples
Most of the larger examples in this document and in these documents:

• z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147308/$file/cbclx01_v2r5.pdf)

• z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147315/$file/cbcpx01_v2r5.pdf)

are available in machine-readable form.

In the following documents, a label on an example indicates that the example is distributed in softcopy.
The label is a file name on the IBM XL C/C++ for z/VM product disk. The labels have the form CCNxyyy or
CLBxyyy, where x refers to a publication:

• R and X refer to the z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf).

• G refers to the z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

• U refers to the XL C/C++ for z/VM: User's Guide.

Chapter 1. About XL C/C++ for z/VM 5

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

6 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 2. C Example

This chapter contains an example of the basic steps for compiling, binding, and running a C program.

If you have not yet compiled an XL C/C++ program or read the other chapters in this book, some concepts
in this chapter may be unfamiliar. This chapter outlines the steps to compile, bind, and run your program
under VM/CMS. Refer to relevant sections of the book for clarification as you read the examples of
compiling, binding and running.

Example of a C Program
The following example shows a simple program that converts temperatures in Celsius to Fahrenheit. You
can either enter the temperatures on the command line or be prompted for the temperature.

In this example, the main program calls the convert function to perform the conversion of the Celsius
temperature to a Fahrenheit temperature and to print the result.

CCNUAAM

#include <stdio.h> 1

#include "ccnuaan.h" 2

void convert(double); 3

int main(int argc, char **argv) 4
{
 double c_temp; 5

 if (argc == 1) { /* get Celsius value from stdin */
 int ch;

 printf("Enter Celsius temperature: \n"); 6

 if (scanf("%f", &c_temp) != 1) {
 printf("You must enter a valid temperature\n");
 }
 else {
 convert(c_temp); 7
 }
 }
 else { /* convert the command-line arguments to Fahrenheit */
 int i;

 for (i = 1; i < argc; ++i) {
 if (sscanf(argviÙ, "%f", &c_temp) != 1)
 printf("%s is not a valid temperature\n",argviÙ);
 else
 convert(c_temp); 7
 }
 }
}

void convert(double c_temp) { 8
 double f_temp = (c_temp * CONV + OFFSET);
 printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp);
}

Figure 1. Celsius to Fahrenheit Conversion

© Copyright IBM Corp. 2003, 2022 7

CCNUAAN

/**
 * User include file: ccnuaan.h * 9
 **/

#define CONV (9./5.)
#define OFFSET 32

Figure 2. User #include File for Conversion Program

 1
This preprocessor directive includes the system file that contains the declarations of standard library
functions, such as the printf() function used by this program.

The compiler searches for the file named STDIO H or for the member STDIO of the VM/CMS MACLIBs,
depending on the options that are set. For a description of the file modes used in the search, see
“Search Sequences for Include Files” on page 52.

 2
This preprocessor directive includes a user file that defines constants that are used by the program.

The compiler searches for a file called CCNUAAN. See “Search Sequences for Include Files” on page
52 for a description of the file modes used in the search.

If the compiler cannot locate the file in the user libraries, the system libraries are searched.

 3
This is a function prototype declaration. This statement declares convert() as an external function
having one parameter.

 4
The program begins execution at this entry point.

 5
This is the automatic (local) data definition to main().

 6
This printf() statement is a call to a C library function that allows you to format your output and
print it on the standard output device. The printf() function is declared in the C standard I/O
header file stdio h included at the beginning of the program.

 7
This statement contains a call to the function convert(). It was declared earlier in the program as
receiving one double value, and not returning a value.

 8
This is a function definition. In this example, the declaration for this function appears immediately
before the definition of the main() function. The C code for the function is in the same file as the code
for the main() function.

 9
This is the user include file containing the definitions for CONV and OFFSET

If you need more details on the constructs of the C language, see the XL C/C++ for z/VM: Runtime Library
Reference.

Compiling, Binding, and Running the C Example
In general, you can compile, bind, and run C programs under CMS or the OpenExtensions shell. For more
information, see Chapter 7, “Compiling a C/C++ Program,” on page 41 and Chapter 8, “Binding and
Running a C/C++ Program,” on page 55.

8 XL C/C++ for z/VM: 1.3 User's Guide

Non-XPLINK and XPLINK under CMS
If the sample C program (CCNUAAM) was stored in CCNUAAM C L, and the sample include file
(CCNUAAN) was stored in CCNUAAN H L, the following set of commands would compile, bind, and run
the source code, using the Language Environment:

GLOBAL LOADLIB SCEERUN 1
CC CCNUAAM C L 2
-- or, for XPLINK --
CC CCNUAAM C L (XPLINK 2
CMOD CCNUAAM 3
-- or, for XPLINK --
CMOD CCNUAAM (XPLINK 3
GLOBAL LOADLIB SCEERUN 4
CCNUAAM 5

Figure 3. Commands to Compile, Bind, and Run a C Program under VM/CMS

 1
Makes the library available to the compiler.

 2
Compiles CCNUAAM C L and stores the object module in CCNUAAM TEXT A.

 3
Using CCNUAAM TEXT A, created by the CC EXEC, generates an executable module called CCNUAAM
MODULE using default options.

 4
Makes the runtime library available to the executable module.

 5
Runs CCNUAAM MODULE A using default options.

Non-XPLINK and XPLINK under the OpenExtensions Shell
If the sample C program (CCNUAAM) was stored in ./ccnuaam.c, and the sample include file (CCNUAAN)
was stored in ./ccnuaan.h, the following set of commands would compile, bind, and run the source code,
using the Language Environment:

Note: In this example, the current working directory is used, so make sure that you are in the directory
you want to use. Use the pwd command to display the current working directory, the mkdir command to
create a new directory, and the cd command to change directories.

c89 -o //conv.module ccnuaam.c 1
-- or, for XPLINK --
c89 -o //conv.module -Wc,xplink -Wb,x ccnuaam.c 1
cms global loadlib sceerun 2
conv 3

Figure 4. Commands to Compile, Bind, and Run a C Program under OpenExtensions

 1
Compiles and binds ccnuaam.c, and generates an executable module called conv.

 2
Makes the runtime library available to the executable module.

 3
Runs conv using default options.

Chapter 2. C Example 9

10 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 3. C++ Examples

This chapter contains two examples that show the basic steps for compiling, binding, and running a C++
program.

If you have not yet compiled a XL C/C++ program or read the other chapters in this book, some concepts
in this chapter may be unfamiliar. This chapter outlines the steps to compile, bind, and run your program
under VM/CMS. Refer to relevant sections of the book for clarification as you read the examples of
compiling, linking and running.

Example of a C++ Program
The following example shows a simple C++ program that prompts you to enter a birth date. The program
output is the corresponding biorhythm chart.

The program is written in object-oriented fashion. A class that is called BioRhythm is defined. It contains
an object birthDate of class BirthDate, which is derived from the class Date. An object that is called
bio of the class BioRhythm is declared.

The example contains 2 files. File CCNUBRH contains the classes that are used in the main program. File
CCNUBRC contains the remaining source code.

If you need more details on the constructs of the C++ language, see the XL C/C++ for z/VM: Runtime
Library Reference.

CCNUBRH

//
// Sample Program: Biorhythm
// Description : Calculates biorhythm based on the current
// system date and birth date entered
//
// File 1 of 2-other file is CCNUBRC

class Date {
 public:
 Date();
 int DaysSince(const char *date);

 protected:
 int curYear, curDay;
 static const int dateLen = 10;
 static const int numMonths = 12;
 static const int numDays[];
};

Figure 5. Header File for the Biorhythm Example (Part 1 of 2)

© Copyright IBM Corp. 2003, 2022 11

class BirthDate : public Date {
 public:
 BirthDate();
 BirthDate(const char *birthText);
 int DaysOld() { return(DaysSince(text)); }

 private:
 char text[Date::dateLen+1];
};

class BioRhythm {
 public:
 BioRhythm(char *birthText) : birthDate(birthText) {
 age = birthDate.DaysOld();
 }
 BioRhythm() : birthDate() {
 age = birthDate.DaysOld();
 }
 ~BioRhythm() {}

 int AgeInDays() {
 return(age);
 }
 double Physical() {
 return(Cycle(pCycle));
 }
 double Emotional() {
 return(Cycle(eCycle));
 }
 double Intellectual() {
 return(Cycle(iCycle));
 }
 int ok() {
 return(age >= 0);
 }

 private:
 int age;
 double Cycle(int phase) {
 return(sin(fmod((double)age, (double)phase) / phase * M_2PI));
 }
 BirthDate birthDate;
 static const int pCycle=23; // Physical cycle - 23 days
 static const int eCycle=28; // Emotional cycle - 28 days
 static const int iCycle=33; // Intellectual cycle - 33 days
};

Figure 6. Header File for the Biorhythm Example (Part 2 of 2)

12 XL C/C++ for z/VM: 1.3 User's Guide

CCNUBRC

//
// Sample Program: Biorhythm
// Description : Calculates biorhythm based on the current
// system date and birth date entered
//
// File 2 of 2-other file is CCNUBRH

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <iostream>
#include <iomanip>

#include "ccnubrh.h" //BioRhythm class and Date class
using namespace std;
static ostream& operator << (ostream&, BioRhythm&);

int main(void) {

 BioRhythm bio;
 int code;

 if (!bio.ok()) {
 cerr << "Error in birthdate specification - format is yyyy/mm/dd";
 code = 8;
 }
 else {
 cout << bio; // write out birthdate for bio
 code = 0;
 }
 return(code);
}

const int Date::dateLen ;
const int Date::numMonths;
const int Date::numDays[Date::numMonths] = {
 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 };

const int BioRhythm::pCycle;
const int BioRhythm::eCycle;
const int BioRhythm::iCycle;

ostream& operator<<(ostream& os, BioRhythm& bio)
{
 os << "Total Days : " << bio.AgeInDays() << "\n";
 os << "Physical : " << bio.Physical() << "\n";
 os << "Emotional : " << bio.Emotional() << "\n";
 os << "Intellectual: " << bio.Intellectual() << "\n";

return(os);
}

Figure 7. z/OS C++ Biorhythm Example Program (Part 1 of 3)

Chapter 3. C++ Examples 13

Date::Date() {
 time_t lTime;
 struct tm *newTime;

 time(&lTime);
 newTime = localtime(&lTime);
 cout << "local time is " << asctime(newTime) << endl;

 curYear = newTime->tm_year + 1900;
 curDay = newTime->tm_yday + 1;
}

BirthDate::BirthDate(const char *birthText) {
 strcpy(text, birthText);
}

BirthDate::BirthDate() {
 cout << "Please enter your birthdate in the form yyyy/mm/dd\n";
 cin >> setw(dateLen+1) >> text;
}

Date::DaysSince(const char *text) {

 int year, month, day, totDays, delim;
 int daysInYear = 0;
 int i;
 int leap = 0;

 int rc = sscanf(text, "%4d%c%2d%c%2d",
 &year, &delim, &month, &delim, &day);
 --month;
 if (rc != 5 || year < 0 || year > 9999 ||
 month < 0 || month > 11 ||
 day < 1 || day > 31 ||
 (day > numDays[month]&& month != 1)) {
 return(-1);
 }
 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
 leap = 1;

 if (month == 1 && day > numDays[month]) {
 if (day > 29)
 return(-1);
 else if (!leap)
 return (-1);
 }

 for (i=0;i<month;++i) {
 daysInYear += numDays[i];
 }
 daysInYear += day;

 // correct for leap year
 if (leap == 1 &&
 (month > 1 || (month == 1 && day == 29)))
 ++daysInYear;

 totDays = (curDay - daysInYear) + (curYear - year)*365;

Figure 8. z/OS C++ Biorhythm Example Program (Part 2 of 3)

 // now, correct for leap year
 for (i=year+1; i < curYear; ++i) {
 if ((i % 4 == 0 && i % 100 != 0) || i % 400 == 0) {
 ++totDays;
 }
 }
 return(totDays);
}

Figure 9. z/OS C++ Biorhythm Example Program (Part 3 of 3)

14 XL C/C++ for z/VM: 1.3 User's Guide

Compiling, Binding, and Running the C++ Example
In general, you can compile, bind, and run C++ programs under CMS or the OpenExtensions shell. For
more information, see Chapter 7, “Compiling a C/C++ Program,” on page 41 and Chapter 8, “Binding and
Running a C/C++ Program,” on page 55.

Non-XPLINK and XPLINK under CMS
If the sample C++ program (CCNUBRC) was stored in CCNUBRC CXX L, and the sample include file
(CCNUBRH) was stored in CCNUBRH H L, the following set of commands would compile, bind, and run the
source code, using the Language Environment:

GLOBAL LOADLIB SCEERUN 1
CC CCNUBRC CXX L 2
-- or, for XPLINK --
CC CCNUBRC CXX L (XPLINK 2
CMOD CCNUBRC (C++ 3
-- or, for XPLINK --
CMOD CCNUBRC (XPLINK C++ 3
GLOBAL LOADLIB SCEERUN 4
CCNUBRC 5

Figure 10. Commands to Compile, Bind, and Run a C++ Program under CMS

 1
Makes the runtime library available to the compiler.

 2
Compiles CCNUBRC CXX L and stores the object module in CCNUBRC TEXT A.

 3
Using CCNUBRC TEXT A, created by the CC EXEC, generates an executable module called CCNUBRC
MODULE using default options.

 4
Makes the runtime library available to the executable module.

 5
Runs CCNUAAM MODULE A using default options.

Non-XPLINK and XPLINK under the OpenExtensions Shell
If the sample C++ program (CCNUBRC) was stored in ./ccnubrc.cpp, and the sample include file
(CCNUBRH) was stored in ./ccnubrh.h, the following set of commands would compile, bind, and run the
source code, using the Language Environment:

Note: In this example, the current working directory is used, so make sure that you are in the directory
you want to use. Use the pwd command to display the current working directory, the mkdir command to
create a new directory, and the cd command to change directories.

cxx -o //bio.module ccnubrc.cpp 1
-- or, for XPLINK --
cxx -o //bio.module -Wc,xplink -Wb,x ccnubrc.cpp 1
cms global loadlib sceerun 2
bio 3

Figure 11. Commands to Compile, Bind, and Run a C++ Program under OpenExtensions

 1
Compiles and binds ccnubrc.cpp, and generates an executable module called bio.

Chapter 3. C++ Examples 15

 2
Makes the runtime library available to the executable module.

 3
Runs bio using default options.

Example of a C++ Template Program
A class template or generic class is a blueprint that describes how members of a set of related classes are
constructed.

The following example shows a simple C++ program that uses templates to perform simple operations on
linked lists.

The main program, CCNUTMP (see “CCNUTMP” on page 16), uses three header files that are from the
Standard C++ Library: list, string, and iostream. It has one class template: list.

CCNUTMP

#include <list>
#include <string>
#include <iostream>
using namespace std;

template <class Item> class IOList {
 public:
 IOList() : myList() {}
 void write();
 void read(const char *msg);
 void append(Item item) {
 myList.push_back(item);
 }
 private:
 list<Item> myList;
};

template <class Item> void IOList<Item>::write() {
 ostream_iterator<Item> oi(cout, " ");
 copy(myList.begin(), myList.end(), oi);
 cout << '\n';
}

Figure 12. C++ Template Program (Part 1 of 2)

16 XL C/C++ for z/VM: 1.3 User's Guide

template <class Item> void IOList<Item>::read(const char *msg) {
 Item item;
 cout << msg << endl;
 istream_iterator<Item> ii(cin);
 copy(ii, istream_iterator<Item>(), back_insert_iterator<list<Item> >(myList));
}

int main() {
 IOList<string> stringList;
 IOList<int> intList;

 char line1[] = "This program will read in a list of ";
 char line2[] = "strings, integers and real numbers";
 char line3[] = "and then print them out";

 stringList.append(line1);
 stringList.append(line2);
 stringList.append(line3);
 stringList.write();
 intList.read("Enter some integers (/* to terminate)");
 intList.write();

 string name1 = "Bloe, Joe";
 string name2 = "Jackson, Joseph";

 if (name1 < name2)
 cout << name1 << " comes before " << name2;
 else
 cout << name2 << " comes before " << name1;
 cout << endl;

 int num1 = 23;
 int num2 = 28;
 if (num1 < num2)
 cout << num1 << " comes before " << num2;
 else
 cout << num2 << "comes before " << num1;
 cout << endl;

 return(0);
}

Figure 13. C++ Template Program (Part 2 of 2)

Compiling, Binding, and Running the C++ Template Example
This section describes the commands to compile, bind and run the template example under CMS and the
OpenExtensions shell.

Under CMS
If the sample C++ template program (CCNUTMP) was stored in CCNUTMP CXX L, the following set of
commands would compile, bind, and run the source code, using the Language Environment:

GLOBAL LOADLIB SCEERUN 1
CC CCNUTMP CXX L (TEMPL 2
-- or, for XPLINK --
CC CCNUTMP CXX L (TEMPL XPLINK 2
CMOD CCNUTMP (C++ 3
-- or, for XPLINK --
CMOD CCNUTMP (XPLINK C++ 3
GLOBAL LOADLIB SCEERUN 4
CCNUTMP 5

Figure 14. Commands to Compile, Bind, and Run a C++ Template Program under CMS

 1
Makes the runtime library available to the compiler.

Chapter 3. C++ Examples 17

 2
Compiles CCNUTMP CXX L and stores the object module in CCNUTMP TEXT A.

 3
Using CCNUTMP TEXT A, created by the CC EXEC, generates an executable module called CCNUTMP
MODULE using default options.

 4
Makes the runtime library available to the executable module.

 5
Runs CCNUTMP MODULE A using default options.

Under the OpenExtensions Shell
If the sample C++ template program (CCNUTMP) was stored in ./ccnutmp.cpp, the following set of
commands would compile, bind, and run the source code, using the Language Environment:

cxx -o //ccnutmp.module -Wc,templ ccnutmp.cpp 1
-- or, for XPLINK --
cxx -o //ccnutmp.module -Wc,templ,xplink -Wb,x ccnutmp.cpp 1
cms global loadlib sceerun 2
ccnutmp 3

Figure 15. Commands to Compile, Bind, and Run a C++ Template Program under OpenExtensions

 1
Compiles ccnutmp.cpp, binds the created object module, and stores the load module in ccnutmp.

 2
Makes the runtime library available to the executable module.

 3
Runs ccnutmp using default options.

18 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 4. Compiler Options

This chapter describes the options that you can use to alter the compilation of your program. For
information on compiler options when compiling under OpenExtensions, see Chapter 5, “Compiler
Options under OpenExtensions,” on page 35.

Specifying Compiler Options
You can override your installation default options when you compile your C or C++ program, by specifying
an option in one of the following ways:

• In the option list when you invoke the IBM-supplied CC EXEC. See “Syntax of the CC EXEC” on page 41
for details.

• In an options file. See “OPTFILE | NOOPTFILE” on page 30 for details.
• In a #pragma options preprocessor directive within your source file. See “Specifying Compiler Options

Using #pragma options” on page 21 for details.

Compiler options specified on the command line can override compiler options used in #pragma
options.

If two contradictory options are specified, the last one specified is accepted and the first ignored.

If you use one of the following compiler options, the option name is inserted at the bottom of your object
module indicating that it was used:

Compiler Option Usage Note

AGGRCOPY

ALIAS (C compile only)

ANSIALIAS

ARCHITECTURE

ARGPARSE

ASSERT(RESTRICT)

BITFIELD

CHARS

COMPACT

COMPRESS

CONVLIT

CSECT

CVFT (C++ compile only)

DEBUG

DLL

EXECOPS

EXPORTALL

FLOAT

GOFF

© Copyright IBM Corp. 2003, 2022 19

Compiler Option Usage Note

GONUMBER

HOT

IGNERRNO

ILP32

INITAUTO

INLINE

LANGLVL

LIBANSI

LOCALE

LONGNAME

MAXMEM

NAMEMANGLING (C++ compile only)

OBJECTMODEL

OPTIMIZE

PLIST

REDIR

RENT (C compile only)

ROCONST

ROSTRING

ROUND

RTTI (C++ compile only)

SERVICE

SPILL

START

STRICT

STRICT_INDUCTION

TARGET

TEMPLATERECOMPILE (C++ compile only)

TEMPLATEREGISTRY (C++ compile only)

TMPLPARSE (C++ compile only)

TUNE

UNROLL

UPCONV (C compile only)

WSIZEOF

XPLINK

20 XL C/C++ for z/VM: 1.3 User's Guide

Specifying Compiler Options Using #pragma options
You can use the #pragma options preprocessor directive to override the default values for compiler
options. Remember that compiler options specified on the command line can override compiler options
used in #pragma options. For complete details on the #pragma options preprocessor directive, see
the z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147308/$file/cbclx01_v2r5.pdf).

The #pragma options preprocessor directive must appear before the first C statement in your input
source file. Only comments and other preprocessor directives can precede the #pragma options directive,
and only the options listed below can be specified. If you specify a compiler option that is not given in the
following list, the compiler generates a warning message and the option is ignored.

AGGREGATE
ALIAS
ANSALIAS
ARCHITECTURE
CHECKOUT
GONUMBER
IGNERRNO
INLINE
LIBANSI
MAXMEM

OBJECT
OPTIMIZE
RENT
SERVICE
SPILL
START
TEST
TUNE
UPCONV
XREF

Notes:

1. When you specify conflicting attributes either explicitly or implicitly by the specification of other
options, the last explicit option is accepted. No diagnostic message is issued to indicate that any
options are overridden.

2. When you specify the SOURCE compiler option on the command line, your listing will contain an
options list indicating the options in effect at invocation. The values in the list are the options specified
on the command line or the default options specified at installation. These values do not reflect any
options that are specified in the #pragma options directive.

Compiler Option Defaults
You can alter the compilation of your program by specifying compiler options when you invoke the
compiler or when you use the preprocessor directive, #pragma options, in your source program. Options
that you specify when you invoke the compiler override installation defaults or compiler options specified
through a #pragma options directive.

The defaults of the compiler options supplied by IBM can be changed to other selected defaults when XL
C/C++ is installed. To determine the current defaults, compile a program with only the SOURCE compiler
option specified. In the listing generated, you can view the options that are in effect at invocation; that
is, the settings that result from the interaction of the command-line options and the defaults that were
specified at installation. The listing does not reflect options specified in #pragma options in the source
file being compiled.

Summary of Compiler Options
See the corresponding section in the z/OS: XL C/C++ User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf).

Descriptions of Compiler Options
For details of specific compiler options, see the corresponding section in the z/OS: XL C/C+
+ User's Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/
cbcux01_v2r5.pdf). For the most part, the compiler options will work as described. However, some

Chapter 4. Compiler Options 21

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf

compiler options are not supported, and other compiler options have operational differences, as identified
in the following sections.

Unsupported Compiler Options
XL C/C++ for z/VM does not support the following z/OS XL C/C++ compiler options:
ARMODE

All functions compiled in access-register mode
ASCII

ASCII support
CICS®

CICS support
DBRMLIB

Database request module for SQL option
DFP

Decimal floating-point support
EPILOG

Supports user-supplied epilog code
FLOAT(IEEE)

Supports IEEE floating-point arithmetic
GENASM

Generates HLASM source code
HGPR

64-bit General Purpose Register support
IPA

Interprocedural analysis
LP64

AMODE 64 support
MAKEDEP

Creates dependency files for the make utility
METAL

Generates HLASM code with no Language Environment runtime dependencies
PREFETCH

Inserts prefetch instructions automatically
PROLOG

Supports user-supplied prolog code
REPORT

Produces pseudo-C code listing files for IPA
RTCHECK

Generates compare-and-trap instructions
SQL

Supports embedded SQL statements
SPLITLIST

Splits a listing into multiple files for IPA
TEMPINC

Specifies a location for C++ template instantiation files

Note: Use the TEMPLATEREGISTRY option instead.

WARN64
Supports diagnostic messages for 32-bit to 64-bit conversions

22 XL C/C++ for z/VM: 1.3 User's Guide

Compiler Options with Operational Differences
The following z/OS XL C/C++ compiler options are supported but operate differently in IBM XL C/C++ for
z/VM.

ARCHITECTURE
The default for this option is ARCH(4). Note that code generated for groups 5 and above (z/Architecture®

mode) might not execute on CMS.

CSECT | NOCSECT

CSEct

NOCSEct

This option does not accept a qualifier. If a qualifier is specified it is ignored.

If CSECT is specified, it will name the code, static and test sections of the object module as
basename#suffix, where:
basename

is one of the following:

• File name of the primary source file, if it is a CMS record file
• Source file name, with path and extension information removed, if it is a BFS file

suffix
is one of the following:
C

For code CSECT
S

For static CSECT
T

For test CSECT

Specifying CSECT allows the compiler to generate long CSECT names. For NOGOFF, if the compiler option
LONGNAME is not in effect when CSECT is specified, the compiler turns it on, and issues an informational
message. For GOFF, both NOLONGNAME and LONGNAME options are supported.

When CSECT is specified, the code, data and test CSECTs are always generated. The test CSECT has
content only when the TEST option is also specified.

Chapter 4. Compiler Options 23

DEBUG | NODEBUG

NODEBUG

DEBUG

(FORMAT (ISD))

(LEVEL (0)

HOOK

NOHOOK

(

,

LINE

NOLINE

BLOCK

NOBLOCK

PATH

NOPATH

FUNC

NOFUNC

CALL

NOCALL

NONE

ALL

PROFILE

)

SYMBOL

NOSYMBOL

)

Defaults:

• NODEBUG
• For FORMAT, the default is ISD.
• For LEVEL, the default is LEVEL(0).
• For HOOK, the defaults are HOOK(ALL) for NOOPTIMIZE and HOOK(NONE,PROFILE) for OPTIMIZE.
• For SYMBOL, the defaults are SYMBOL for NOOPTIMIZE and NOSYMBOL for OPTIMIZE.

FORMAT(ISD)

produces the same debug information as the TEST option.

LEVEL(0)

controls the amount of debug information produced. LEVEL(0) is the only level currently supported.

HOOK
controls the generation of LINE, BLOCK, PATH, CALL, and FUNC hook instructions. Hook instructions
appear in the compiler Pseudo Assembly listing in the following form:

EX r0,HOOK..[type of hook]

Note: If the OPTIMIZE compiler option is specified, the only valid suboptions for HOOK are CALL and
FUNC. If other suboptions are specified, they will be ignored.

The type of hook that each hook suboption controls is summarized in the following list:

24 XL C/C++ for z/VM: 1.3 User's Guide

• LINE

– STMT - General statement
• BLOCK

– BLOCK-ENTRY - Beginning of block
– BLOCK-EXIT - End of block
– MULTIEXIT - End of block and procedure

• PATH

– LABEL - A label
– DOBGN - Start of a loop
– TRUEIF - True block for an if statement
– FALSEIF - False block for an if statement
– WHENBGN - Case block
– OTHERW - Default case block
– GOTO - Goto statement
– POSTCOMPOUND - End of a PATH block

• CALL

– CALLBGN - Start of a call sequence
– CALLRET - End of a call sequence

• FUNC

– PGM-ENTRY - Start of a function
– PGM-EXIT - End of a function

There is also a set of shortcuts for specifying a group of hooks:
NONE

The same as specifying NOLINE, NOBLOCK, NOPATH, NOCALL, and NOFUNC. It instructs the
compiler to suppress all hook instructions.

ALL
The same as specifying LINE, BLOCK, PATH, CALL, and FUNC. It instructs the compiler to generate
all hook instructions. This is the ideal setting for debugging purposes.

PROFILE
The same as specifying CALL and FUNC.

SYMBOL
generates symbol information that gives you access to variable and other symbol information.

If you specify the INLINE and DEBUG compiler options when NOOPTIMIZE is in effect, INLINE is ignored.

ENUMSIZE

ENUM (

SMALL

INT

1

2

4

)

Default: ENUM(SMALL)

Chapter 4. Compiler Options 25

SMALL
specifies that enumerations occupy a minimum amount of storage, which is either 1, 2, or 4 bytes of
storage, depending on the range of the enum constants.

INT
specifies that enumerations occupy 4 bytes of storage and are represented by int.

1
specifies that enumerations occupy 1 byte of storage.

2
specifies that enumerations occupy 2 bytes of storage

4
specifies that enumerations occupy 4 bytes of storage.

EVENTS | NOEVENTS

EVENTs

NOEVENTs ( filename)

The EVENTS option creates an events file that contains error information and source file statistics.

EVENTS(filename) places the events information in the specified file. filename can be a CMS record
or BFS file. If you do not specify a file name for the EVENTS option, the compiler generates a file name as
follows:

• For CMS source files, the events information is written to a file that has the name of the source file and a
file type of SYSEVENT.

• For BFS source files, the events information is written to a file that has the name of the source file and
a .err extension.

The compiler ignores #line directives when the EVENTS option is active, and issues a warning message.

INLRPT | NOINLRPT

INLRpt

NOINLRpt ( filename)

If you use the OPTIMIZE option, you can also use INLRPT to specify that the compiler generate a report
as part of the compiler listing. This report provides the status of subprograms that were inlined, specifies
whether they were inlined or not and displays the reasons for the action of the compiler.

You can specify filename for the inline report output file. filename can be a CMS record or BFS file. If
you do not specify a file name for the INLR option, the compiler generates a file name as follows:

• For CMS record source files, the report is created in a file that has the source file name, file type
LISTING, and file mode A.

• For BFS source files, the report is created in a BFS file that has the source file name with a .lst
extension.

The NOINLR option can optionally take a filename suboption. This file name then becomes the default.
If you subsequently use the INLR option without filename, the compiler uses the file name that you
specified in the earlier specification or NOINLR. For example,

 CC HELLO (NOINLR(/hello.lis) INLR OPT

is the same as specifying:

26 XL C/C++ for z/VM: 1.3 User's Guide

 CC HELLO (INLR(/hello.lis) OPT

If you specify this multiple times, the compiler uses the last specified option with the last specified
suboption. The following two specifications have the same result:

 CC HELLO (NOINLR(/hello.lis) INLR(/n1.lis) NOINLR(/test.lis) INLR

 CC HELLO (INLR(/test.lis)

If you specify file names with the SOURCE, LIST or INLRPT options, all the listing sections are combined
into the last file name specified.

LIST | NOLIST

LISt

NOLISt ( filename)

The LIST option instructs the compiler to generate a listing of the machine instructions in the object
module (in a format similar to assembler language instructions) in the compiler listing.

LIST(filename) places the compiler listing in the specified file. filename can be a CMS record or BFS
file. If you do not specify a file name for the LIST option, the compiler generates a file name as follows:

• For CMS record source files, the listing is created in a file that has the source file name, file type
LISTING, and file mode A.

• For BFS source files, the listing is created in a BFS file that has the source file name with a .lst
extension.

The NOLIST option optionally takes a filename suboption. This file name then becomes the default. If
you subsequently use the LIST option without a filename suboption, the compiler uses the file name
that you specified in the earlier NOLIST. For example, the following specifications have the same effect:

 CC HELLO (NOLIST(/hello.lis) LIST

 CC HELLO (LIST(/hello.lis)

If you specify file names with the SOURCE, LIST or INLRPT options, all the listing sections are combined
into the last file name specified.

LSEARCH | NOLSEARCH

LSEarch (

,

//

opt)

NOLSEarch

The LSEARCH option directs the preprocessor to look for user include files in the specified libraries in the
VM/CMS MACLIBs, on the specified minidisks, or in the specified BFS directories. User include files are
files associated with the #include "filename" format of the #include preprocessor directive. See
“Using Include Files” on page 47 for a description of the #include preprocessor directive.

For further information on library search sequences, see “Search Sequences for Include Files” on page
52.

You must use the double slashes (//) to specify non-BFS searches when the OE compiler option is
specified. (You may use them regardless of the OE option.)

Chapter 4. Compiler Options 27

Parts of the #include filename are appended to each LSEARCH opt to search for the include file. opt
has the format:

CMS_filemode

BFS_directory

( fname . suffix) = (

,

subopt)

CMS_filemode
is the file mode where the sequential disk search for the user include file begins.

BFS_directory
is the BFS path name indicating the directory that should be searched for the include file.

(fname.suffix) = (subopt,subopt,...)
is a specification where:
fname

is the name of the include file or *.
suffix

is the suffix of the include file or *.
subopt

indicates a sub-path to be used in the search for the include files that match the pattern of
fname.suffix and should appear at least once. The possible values are:
LIB([mac,...])

Each mac is a MACLIB name that should be searched in the same order as in the list. The
format of the name is either that of a ddname (form DD:name) or fn.ft.fm, where the ft
must be MACLIB and the default fm is *.

NOLIB
Specifies that all LIB(...) previously specified for this pattern should be ignored at this
point. For example, (*.h)=(LIB(n1.MACLIB),NOLIB,LIB(n4.MACLIB)) is equivalent to
(*.h)=(LIB(n4.MACLIB)).

When the #include filename matches the pattern of fname.suffix, the search continues
according to the subopts in the order given. An asterisk (*) in fname or suffix matches anything.
If the file is not found, other searches are attempted according to the remaining options in
LSEARCH.

The MACLIBs are searched in the same order for the include file with * (asterisk) matching
anything.

If a file mode is also specified using the SEARCH option, the disks specified by the LSEARCH option are
searched first. If the user include file is not located on any of the LSEARCH disks, the disks in the SEARCH
option are scanned, in the standard CMS search order, for the user include file.

If no disk is specified, the file mode A will be added to the end of the LSEARCH options.

For more information on the search paths, see “Search Sequences for Include Files” on page 52.

Under CMS, the NOLSEARCH option instructs the preprocessor to perform the standard CMS search for
user include files.

Note: If the filename in the #include directive is in absolute form, searching is not performed. See
“Determining If filename Is In Absolute Form” on page 49 for more details on absolute #include
filename.

28 XL C/C++ for z/VM: 1.3 User's Guide

Specifying Byte File System (BFS) Files
When specifying BFS library searches, do not put double slashes at the beginning of the LSEARCH opt.
Use path names separated by slashes (/) in the LSEARCH opt for a BFS library. When the LSEARCH opt
does not start with double slashes, any single slash in the name indicates a BFS library. If you do not have
path separators (/), then setting the OE compiler option on indicates that this is a BFS library; otherwise
the library is interpreted to be a CMS library.

The opt specified for LSEARCH is combined with the filename in #include to form the include file name,
for example:

LSEARCH(/u/mike/myfiles)
#include "new/headers.h"

The resulting BFS file name is:

/u/mike/myfiles/new/headers.h

OBJECT | NOOBJECT

OBJect

NOOBJect ( filename)

The OBJECT option specifies whether the compiler is to produce an object module.

The GOFF compiler option specifies the object format that will be used to encode the object information.

OBJECT(filename) places the object module in the specified file. filename can be:

• CMS record file
• Single-letter mode to which the object module is stored as filename TEXT fm
• BFS file
• Fully qualified path name
• Path name relative to the current working directory

If you do not specify a file name for the OBJECT option, the compiler generates a file name as follows:

• For CMS record source files, the listing is created in a file that has the source file name, file type TEXT,
and file mode A.

• For BFS source files, the listing is created in a BFS file that has the source file name with a .o extension.

The NOOBJ option can optionally take a filename suboption. This file name then becomes the default.
If you subsequently use the OBJ option without a filename suboption, the compiler uses the file name
that you specified in the earlier NOOBJ. For example, the following specifications have the same result:

 CC HELLO (NOOBJ(/hello.obj) OBJ

 CC HELLO (OBJ(/hello.obj)

If you specify OBJ and NOOBJ multiple times, the compiler uses the last specified option with the last
specified suboption. For example, the following specifications have the same result:

 CC HELLO (NOOBJ(/hello.obj) OBJ(/n1.obj) NOOBJ(/test.obj) OBJ

 CC HELLO (OBJ(/test.obj)

If you request a listing by using the SOURCE, INLRPT, or LIST option, and you also specify OBJECT, the
name of the object module is printed in the listing prolog.

You can specify this option using the pragma option directive for C.

Chapter 4. Compiler Options 29

OPTFILE | NOOPTFILE

OPTFile

NOOPTFile ( filename)

The OPTFILE option directs the compiler to look for compiler options in the file specified.

OPTFILE(filename) specifies the name of the options file where your compiler options are defined.
filename can be a CMS record or BFS file. The compiler opens filename as it is specified. If filename
is not a valid name, or if the file does not exist, the compiler does not issue an error message. For
example, specifying:

 CC cpgma (OPTFILE(myopts)

does not cause an error, but file myopts is not opened.

Specifying:

 CC cpgma (OPTFILE(myopts optfile)

opens options file myopts optfile. Under the OpenExtensions shell, filename is a BFS file. If
filename is not specified, DD:SYSOPTF is used.

The NOOPTF option can optionally take a filename suboption. This file name then becomes the
default. If NOOPTF(filename) is specified and a subsequent OPTF option is used without a filename
suboption, the file name specified in the previous NOOPTF is used. For example,

 CC HELLO (NOOPTF(hello.opt) OPTF

is equivalent to specifying:

 CC HELLO (OPTF(hello.opt)

The options are specified in a free format with the same syntax as they would have on the command
line. Everything specified in the file is taken to be part of a compiler option (except for the continuation
character) and unrecognized entries are flagged. Nothing on a line is ignored.

If the record format of the options file is fixed and the record length is greater than 72, columns 73 to the
end-of-line are treated as sequence numbers and are ignored.

Notes:

1. You cannot nest the OPTFILE option. If the OPTFILE option is also used in the file specified by
another OPTFILE option, it is ignored.

2. If NOOPTFILE is specified after a valid OPTFILE, it does not undo the effect of the previous OPTFILE.
3. If the file cannot be opened or cannot be read, NO warning message will be issued and the OPTFILE

option will be ignored.
4. The options file can be an empty file.

The OPTFILE option is added to the options section of the compiler-generated listing file.

30 XL C/C++ for z/VM: 1.3 User's Guide

PPONLY | NOPPONLY

PPonly

NOPPonly

(

,

filename

COMMENTS

NOCOMMENTS

LINES

NOLINES

n

*

)

The PPONLY option specifies that only the preprocessor is to be run against the source file. This output of
the preprocessor consists of the original source file with all the macros expanded and all the include files
inserted. It is in a format that can be compiled. The suboptions are:
filename

is the file name for the preprocessed output file. filename can be a CMS record or BFS file. If a
filename is not specified for the PPONLY option, the compiler writes the preprocessed output as
follows:

• For CMS record source files, the preprocessed output is written to a file that has the source file
name and file type EXPAND.

• For BFS source files, the preprocessed output is written to a BFS file that has the source file name
with a .i extension.

NOCOMMENTS
COMMENTS

specifies whether comments should be preserved in the preprocessed output. The default is
NOCOMMENTS.

NOLINES
LINES

specifies whether #line directives should be issued at include file boundaries, block boundaries, and
where there are more than 3 blank lines. The default is NOLINES.

n
is an integer between 2 and 32760 inclusive that specifies the column number at which all lines are
folded.

*
specifies that all lines are folded at the maximum record length of 32760. Otherwise, all lines are
folded to fit in the output file, based on the record length of the output file.

The PPONLY suboptions are cumulative. If you specify suboptions in multiple instances of PPONLY and
NOPPONLY, all the suboptions are combined and used for the last occurrence of the option. For example,
the following three specifications have the same result:

 CC HELLO (NOPPONLY(/aa.exp) PPONLY(LINES) PPONLY(NOLINES)

 CC HELLO (PPONLY(/aa.exp,LINES,NOLINES)

 CC HELLO (PPONLY(/aa.exp,NOLINES)

All #line and #pragma preprocessor directives (except for margins and sequence directives) remain.
When you specify PPONLY(*), #line directives are generated to keep the line numbers generated
for the output file from the preprocessor similar to the line numbers generated for the source file. All
consecutive blank lines are suppressed.

Chapter 4. Compiler Options 31

If you specify the PPONLY option, the compiler turns on the TERMINAL option. If you specify the
SHOWINC, XREF, AGGREGATE, or EXPMAC options with the PPONLY option, the compiler issues a warning,
and ignores the options.

If you specify the PPONLY and LOCALE options, all the #pragma filetag directives in the source file are
suppressed. The compiler generates its #pragma filetag directive at the first line in the preprocessed
output file in the following format:

 ??=pragma filetag ("locale code page")

In the above, ??= is a trigraph representation of the # character.

The code page in the pragma is the code set that is specified in the LOCALE option. For more information
on locales, see the z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

The NOPPONLY option specifies that both the preprocessor and the compiler are to be run against the
source file.

If you specify both PPONLY and NOPPONLY, the last one that is specified is used.

SEARCH | NOSEARCH

SEarch (

,

//

opt)

NOSEarch

The SEARCH option directs the preprocessor to look for system include files in the specified libraries in the
VM/CMS MACLIBs, on the specified minidisks, or in the specified BFS directories. System include files are
those files associated with the #include <filename> format of the #include preprocessor directive.
See “Using Include Files” on page 47 for a description of the #include preprocessor directive.

For further information on library search sequences, see “Search Sequences for Include Files” on page
52.

The suboptions for the SEARCH option are identical to those for the LSEARCH option, as described in
“LSEARCH | NOLSEARCH” on page 27.

Any NOSEARCH option cancels all previous SEARCH specifications and any SEARCH options following
it will be used. When several SEARCH compiler options are specified, all the libraries in these SEARCH
options are used to find the user include files.

The NOSEARCH option instructs the preprocessor to perform the standard CMS search for system include
files.

Note: If the file name in the #include directive is in absolute form, searching is not performed. See
“Determining If filename Is In Absolute Form” on page 49 for more details on absolute #include
filename.

SOURCE | NOSOURCE

SOurce

NOSOurce ( filename)

The SOURCE option generates a listing that shows the original source input statements plus any diagnostic
messages.

32 XL C/C++ for z/VM: 1.3 User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

SOURCE(filename) places the listing in the specified file. filename can be a CMS record or BFS file. If
you do not specify a file name for the SOURCE option, the compiler constructs the file name as follows:

• For CMS record source files, the listing is created in a file that has the source file name, file type
LISTING, and file mode A.

• For BFS source files, the listing is created in a BFS file that has the source file name with a .lst
extension.

The NOSOURCE option can optionally take a filename suboption. This file name then becomes the
default. If you subsequently use the SOURCE option without a filename suboption, the compiler uses
the file name that you specified in the earlier NOSOURCE. For example, the following specifications have
the same result:

 CC HELLO (NOSO(/hello.lis) SO

 CC HELLO (SO(/hello.lis)

If you specify SOURCE and NOSOURCE multiple times, the compiler uses the last specified option with the
last specified suboption. For example, the following specifications have the same result:

 CC HELLO (NOSO(/hello.lis) SO(/n1.lis) NOSO(/test.lis) SO

 CC HELLO (SO(/test.lis)

If you specify file names with the SOURCE, LIST or INLRPT options, all the listing sections are combined
into the last file name specified.

Using the C Compiler Listing
See the corresponding section in the z/OS: XL C/C++ User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf).

Using the C++ Compiler Listing
See the corresponding section in the z/OS: XL C/C++ User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf).

Chapter 4. Compiler Options 33

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf

34 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 5. Compiler Options under OpenExtensions

This chapter discusses the compiler options that you can use when compiling under OpenExtensions. For
information about compiler options under VM/CMS, see Chapter 4, “Compiler Options,” on page 19.

Specifying Compiler Options Using c89/cxx
The c89 and cxx utilities are the OpenExtensions interface to the XL C/C++ compiler. When you issue c89
or cxx for a C or C++ application program, the utility passes information about the application program
and the compiler options to the XL C/C++ compiler for processing.

The c89 and cxx utilities select specific values for most compiler options. You can cause them to change
the settings of those C/C++ compiler options that they have corresponding flags (options) for. If you want
to pass other C/C++ compiler options to the XL C/C++ compiler, use the -W option. If you used the options
-E, -g, -s, or -O you cannot override the compiler options forced by the c89 or cxx utility. This holds true
even when using the -W option to explicitly pass XL C/C++ compiler options.

XL C/C++ compiler options are summarized in “Compiler Option Defaults” on page 21 and described
in detail in “Descriptions of Compiler Options” on page 21. For more information on OpenExtensions
commands, see the the z/VM: OpenExtensions Commands Reference.

c89/cxx Default Compiler Settings
c89 overrides the default settings for the XL C/C++ compiler options. The overridden defaults are:

• DEFINE(errno=(*__errno()))
• DEFINE(_POSIX_SOURCE=1)
• DEFINE(_POSIX1_SOURCE=2)
• DEFINE(_POSIX_C_SOURCE=2)
• LANGLVL(ANSI)
• OE
• RENT

c89 Selectable Compiler Settings

Format
c89 [-cgsEOV]
 [-D name[=value]] [-U name]...
 [-W c,opt[,opt]...]...
 [-o outfile]
 [-I directory]... [-L directory]...
 [file.c]... [file.a]... [file.o]...
 [-l libname]...

cxx [-+cgsEOV]
 [-D name[=value]] [-U name]...
 [-W c,opt[,opt]...]...
 [-o outfile]
 [-I directory]... [-L directory]...
 [file.c]... [file.a]... [file.o]...
 [-l libname]...

© Copyright IBM Corp. 2003, 2022 35

Description
c89/cxx Option

Compiler Option
-+ (cxx only)

All source files are to be recognized as C++ source files.
-c

Compilation only
-D

Define preprocessor macros.
-E

Run the C preprocessor only (do not generate an object file or run the linkage editor) and copy output
source to stdout.

-g
Generate symbolic information with the compiled object. The c89 -s option, the default, indicates
that no debugging information or line number tables be generated.

-I
Specify where to search for C include files. The search path is supplied as a value on the option. For
example:

-I /usr/hankvp/bin/hdrs

-L
Specify where to search for archive files specified by the -I option.

-O
Set an optimization level and place functions at their point of call.

o
Write the executable file to outfile.

-s
Do not generate symbolic information with the compiled object.

-U
Undefine preprocessor macros (including c89 default macro definitions).

-V
Write a "verbose" listing to stdout. Listings are generated by the compiler and binder.

The information in the compiler listing corresponds to those compiler options set by the c89 -V
option. For a complete description of the effect of each compiler option, see “Descriptions of
Compiler Options” on page 21.

-W
Pass compiler or module build options. Phase 0 or c specifies the compile phase, and phase b
specifies the module build phase. The module build phase is binder processing to create the module
file. To pass options to the BIND command, the module build option must be b. For example, to pass
the LANGLVL option to the compiler, specify:

 c89 -W 0,langlvl(extended)

and to write the binder map to stdout, specify:

 c89 -W b,b,map file.c

For a detailed description of the c89 options, see the z/VM: OpenExtensions Commands Reference.

c89 uses the following compiler option settings if the c89 option listed is specified (more than one
compiler option may be specified by a particular c89 option):

36 XL C/C++ for z/VM: 1.3 User's Guide

Table 2. c89 Option and Corresponding Compiler Option

c89 Option Compiler Options(s)

D value DEFINE(value)

-E PPONLY(1024)

-g
TEST(ALL)
GONUMBER

-Ivalue SEARCH(value)

-O
INLINE(NOAUTO,NOREPORT,250,1000)
NOMEMORY
OPTIMIZE(2)

-s
NOGONUMBER
NOTEST

-V AGGREGATE
CHECKOUT(ALL,NOEXTERN,NOPPCHECK,NOPPTRACE)
FLAG(I)
LIST
OFFSET
SHOWINC
SOURCE
XREF

Notes:

1. The c89 -U value option causes c89 not to specify a corresponding DEFINE(value) compiler option.
2. Use of the c89 -V option may result in a return code of 4 from the compile step when the return code

should be 0. This is because of the specification of the CHECKOUT option. Also, the specification of
FLAG(I) may cause additional informational messages to be directed to stderr.

Feature Test Macros
For information on how to use the feature test macros, see the XL C/C++ for z/VM: Runtime Library
Reference.

Chapter 5. Compiler Options under OpenExtensions 37

38 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 6. Runtime Options

This chapter describes runtime options and the #pragma runopts preprocessor directives available to you
with XL C/C++ and Language Environment. For information on runtime options under OpenExtensions,
refer to “Specifying Runtime Options under OpenExtensions” on page 70.

Specifying Runtime Options
To allow your application to recognize runtime options, either the EXECOPS compiler option, or the
#pragma runopts(execops) directive must be in effect. The default compiler option is EXECOPS.

You can specify runtime options as follows:

• On the command line when you invoke your program under VM/CMS
• At compile time, on a #pragma runopts directive in your main program

If EXECOPS is in effect, use a slash (/) to separate runtime options from arguments that you pass to the
application. For example:

 PGMX STORAGE(FE,FE,FE)/PARM1 PARM2 PARM3

If EXECOPS is in effect, Language Environment interprets the character string that precedes the slash as
runtime options. It passes the character string that follows the slash to your application as arguments. If
no slash separates the arguments, Language Environment interprets the entire string as an argument.

If EXECOPS is not in effect, Language Environment passes the entire string to your application.

If you specify two or more contradictory options (for example in a #pragma runopts statement), the
last option that is encountered is accepted. Runtime options that you specify at execution time have
higher precedence than those specified at compile time.

For more information on the precedence and specification of runtime options for applications that
are compiled with the Language Environment, see the z/VM: Language Environment User's Guide
and the z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf).

Runtime Options Using Language Environment
You can use the #pragma runopts preprocessor directive to specify Language Environment runtime
options, including ARGPARSE, ENV, PLIST, REDIR, and EXECOPS, which have matching compiler options.
If you specify the compiler option, it has precedence over the #pragma runopts directive.

When the runtime option EXECOPS is in effect, you can specify runtime options at execution time, as
previously described. These options override runtime options that you compiled into the program by using
the #pragma runopts directive.

The #pragma runopts directive can appear in any file: main, include, or source. You can specify multiple
runtime options per directive or multiple directives per compilation unit. If you want to specify the
ARGPARSE or REDIR options, the #pragma runopts directive must be in the same compilation unit as
main().

When you specify multiple instances of #pragma runopts in separate compilation units, the compiler
generates a CSECT for each compilation unit that contains a #pragma runopts directive. When you bind
multiple compilation units that specify #pragma runopts, the binder takes only the first CSECT, thereby
ignoring your other option statements. Therefore, you should always specify your #pragma runopts
directive in the same source file that contains the function main().

© Copyright IBM Corp. 2003, 2022 39

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf

For more information on the #pragma runopts preprocessor directive, see the
z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147308/$file/cbclx01_v2r5.pdf).

40 XL C/C++ for z/VM: 1.3 User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf

Chapter 7. Compiling a C/C++ Program

This chapter describes how to compile your program using the XL C/C++ compiler and Language
Environment under VM/CMS. For information on compiling your program under OpenExtensions, refer
to Chapter 9, “Compiling a C/C++ Program under OpenExtensions,” on page 65.

The XL C/C++ compiler analyzes the C/C++ source program and translates the source code into machine
instructions known as object code. You must have access to the Language Environment C/C++ runtime
library, because the compiler calls functions in the library to compile the code.

Invoking the XL C/C++ Compiler
When you invoke the XL C/C++ compiler, the operating system automatically tries to locate and execute
the compiler. The location of the compiler is determined by the system programmer who installed the
product. The compiler may be in a nucleus extension, in a discontiguous saved segment (DCSS), or on a
minidisk. In either instance, you only need to ensure that you have access to the C compiler version that
you want to use.

The XL C/C++ compiler can be invoked under VM/CMS using the IBM supplied CC EXEC.

The XL C/C++ compiler compiles source code using the Language Environment. You must ensure that the
load libraries that contain XL C/C++, Language Environment, and VM/CMS library routines are available.
The runtime libraries are needed for compilation, because the compiler calls functions from the libraries.
The GLOBAL command is used to link to the libraries. The libraries may be in a nucleus extension, a DCSS,
or in the GLOBAL LOADLIB list. For more information on how to make libraries available for execution,
refer to “Making the Runtime Libraries Available for Execution” on page 62. The following examples
assume that the default names (which can be changed by the system programmer during installation) are
used.

GLOBAL Command for Using the Language Environment Library
The GLOBAL commands to make the library available to compile, bind, and run a program are as follows:

• To run the compiler:

GLOBAL LOADLIB USERLIB SCEERUN

• To bind your C object code:

GLOBAL TXTLIB USERLIB SCEELKED

• To bind your C++ object code:

GLOBAL TXTLIB USERLIB SCEELKED SCEECPP

• To run your C or C++ module:

GLOBAL LOADLIB USERLIB SCEERUN

where USERLIB represents any user load or text libraries.

Note: The SCEECPP text library is part of Language Environment and contains the base C++ link-edit
routines.

Syntax of the CC EXEC
The syntax of the CC EXEC is:

© Copyright IBM Corp. 2003, 2022 41

CC filename

(

,

options

filename
is the name of the source file to be compiled. The source file can be a CMS record or BFS file.

options
specifies the compiler options to use during compilation. If no compiler options are specified, the
default settings are used.

For a description of the compiler options that you can specify when invoking the CC EXEC, refer to
“Descriptions of Compiler Options” on page 21.

Specifying the Input File
Input for the compiler consists of:

• Your C/C++ source program
• C/C++ standard header files
• Your header files

The primary input to the compiler is the first argument passed to the CC exec. Your C/C++ source may be
in a CMS record or BFS file. The secondary input to the compiler consists of files identified by #include
preprocessor directives in the input. For more information on #include files, see “Using Include Files”
on page 47.

The output that the compiler generates is based on the primary source file input.

CMS Record Files
To specify a CMS record file as your primary source file, use the following syntax:

filename

filetype

filemode

You must always specify the source file name following the CC keyword. If the file type is not C, the file
type must also be specified on the CC EXEC. If you do not specify the file mode, the currently accessed
minidisks are searched in the standard VM/CMS search order. The file that is compiled is the first one
encountered in the disk search. For example, if you have a file called TWICE C on both your B and Y
minidisks, and the Y minidisk is not accessed as an extension of the A disk, TWICE C B is compiled if you
do not specify the file mode. Note also that if you specify the file mode, you must also specify the file type.

KNOWN: - The file name is SALARY.
 - The file type is C.
 - The file mode is A.

USE THE FOLLOWING COMMAND:
 CC SALARY
Result: The object module generated will have file name
 SALARY, a file type of TEXT, and file mode A.

Figure 16. Specifying a CMS Record Input File under VM/CMS (Example 1)

42 XL C/C++ for z/VM: 1.3 User's Guide

KNOWN: - The file name is INCOME
 - The file type is NET
 - The file mode is Y

USE THE FOLLOWING COMMAND:
 CC INCOME NET Y
Result: The object module generated will have file name INCOME,
 a file type of NET, and file mode A.

Figure 17. Specifying a CMS Record Input File under VM/CMS (Example 2)

BFS Files
You can also use the CC EXEC to compile source that is in BFS files. To specify a BFS file as your primary
source file, use the following syntax:

./

../

/

/

pathname

filename

./
specifies the current directory.

../
specifies the previous directory.

/
specifies the beginning of an absolute path name.

pathname
specifies all directories leading to the file.

filename
is the name of the source file.

When you use the CC EXEC, you must use unambiguous BFS source file names. For example, the compiler
treats the following input files as BFS files:

CC ./test/hello.c
CC /u/david/test/hello.c
CC test/hello.c
CC ///hello.c
CC ../test/hello.c

If filename is not in the pathname format with single slashes, the compiler treats the file as non-BFS
input. The following input files are treated as non-BFS files:

CC hello.c
CC //hello.c

For complete information on working with BFS files, see the z/VM: OpenExtensions User's Guide.

Chapter 7. Compiling a C/C++ Program 43

KNOWN: - The current working directory is /u/proga.
 - The file name is myprog.c.

USE THE FOLLOWING COMMAND:
 CC ./myprog.c
Result: The object module generated will be in the current
 working directory and have a file name
 myprog.o.

Figure 18. Specifying a BFS Input File under VM/CMS (Example 1)

KNOWN: - The file name is myprog.c in directory
 /u/boris/progs.
 - The current working directory is /u/proga.

USE THE FOLLOWING COMMAND:
 CC /u/boris/progs/myprog.c
Result: The object module generated will be myprog.o
 in the current working directory /u/proga.

Figure 19. Specifying a BFS Input File under VM/CMS (Example 2)

For information on compiling programs under OpenExtensions, see Chapter 9, “Compiling a C/C++
Program under OpenExtensions,” on page 65.

Specifying Compiler Options
There are many compiler options that you can specify when you compile using the CC EXEC. They are
described in “Descriptions of Compiler Options” on page 21.

The following examples show you how to override the default options when compiling under VM/CMS.
When you specify the options, separate them by at least one blank; you can have any number of extra
blanks. The order is unimportant. If two contradictory options are specified, the last option specified is
accepted and the first ignored.

CMS Record File Examples

KNOWN: - The file being compiled is FINANCE EXPAND A.
 - A listing of the source file is required.

USE THE FOLLOWING COMMAND:
 CC FINANCE EXPAND (SOURCE

Result: A listing with the same file name as your source and
 a file type of LISTING is generated.
 When an error occurs, the compiler sends an error
 message to your terminal screen and to your source

Figure 20. Specifying Compiler Options under VM/CMS (Example 1)

44 XL C/C++ for z/VM: 1.3 User's Guide

KNOWN: - The file being compiled is BASEBALL C X.
 - The following disks are to be scanned for
 user include files:
 - V,W,X,Y, and Z (using the LSEARCH option)
 - S,T, and U (using the SEARCH option)
 - The following disks are to be scanned for
 system include files:
 - S,T,U,V,W,X,Y, and Z (using the SEARCH option)

USE THE FOLLOWING COMMAND:
 CC BASEBALL C X (LSEARCH(V) SEARCH(S)

Result: If the user include file is not found
 on one of the disks specified by the LSEARCH option,
 then the disks specified by the SEARCH option are
 searched for the user include file.

 The disks S through Z are scanned in the standard CMS search
 order for the system include file(s).

Figure 21. Specifying Compiler Options under VM/CMS (Example 2)

BFS File Example

KNOWN: - The file being compiled is myprog.c in the
 current working directory /u/progs.
 - A listing of the source file is required.

USE THE FOLLOWING COMMAND:
 CC ./myprog.c (source

Result: A listing with the same file name as your source and
 a file extension of lst is generated in your
 current working directory.

Figure 22. Specifying Compiler Options for BFS Files

Creating Input Source Files
For CMS record files, the C/C++ compiler accepts both F-format and V-format records. The primary
and secondary input can have different formats. For information on mixing formats, see the #pragma
sections, margins and sequence in the z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf).

To assist you in migrating existing applications from other operating systems to VM/CMS, file name
conversions (described in the following sections) are performed automatically by XL C/C++ These
conversions affect file names specified on #include preprocessor directives, and in file I/O library
functions such as fopen. See the z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf) for general information on
the #include directive and the available I/O functions.

For complete information on working with BFS files, see the z/VM: OpenExtensions User's Guide.

Specifying Output Files
The compiler can generate the following kinds of output files:

• Object file
• Listing file
• Preprocessor output
• Events file

Chapter 7. Compiling a C/C++ Program 45

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf

• Error message file

When you compile source, you can specify the resultant output file type by using the following compiler
options:

Output File Type Compiler Option

Object File OBJECT(filename)

Listing File INLRPT(filename)

LIST(filename)

SOURCE(filename)

Preprocessor Output PPONLY(filename)

Events File EVENTS(filename)

When you specify any of these compiler options and do not use suboptions to identify the output file
names, the compiler generates default output file names based on the type of source file being compiled.
Output file names are the same as the source file names. The default output CMS file types and BFS
suffixes that the compiler uses are summarized in Table 3 on page 46.

Table 3. Default CMS File Types and BFS Suffixes for Output Files

Output File CMS filename Type BFS filename Suffix

Object File TEXT o

Listing File LISTING lst

Preprocessor Output EXPAND i

Events File SYSEVENT err

If you compile source in a CMS record file without specifying output file names in the compiler options,
output files are generated on the A disk with the file type shown in Table 3 on page 46. For example,

 cc hello c

generates object file

 hello text

If you compile source in a BFS file without specifying output file names in the compiler options, output
files are generated in the current directory with the suffix shown in Table 3 on page 46. For example,

 cc /user/fred/hello.c

generates object file

 ./hello.o

Events file output is generated using the same file name as the source file and stored on the user's A disk
using a file type of SYSEVENT.

Error messages are redirected to stderror if the TERMINAL option is in effect. Error messages can be
redirected to a file using the redirection technique, for example:

 CC A (>ERROR.LOG

46 XL C/C++ for z/VM: 1.3 User's Guide

Valid Input/Output File Types
Depending on the type of file that is used as primary input, certain output file types are allowed. The
following table describes these input and output file combinations:

Table 4. Valid Combinations of Source and Output File Types

Input Source File Output File Specified Not In
filename Format, for example A B C

Output specified as BFS file, for
example a/b/c.o

CMS Native File, for
example A B

1. If output file exists, overwrites it
2. If output file does not exist,

creates the file

1. If the directory does not exist,
compilation fails

2. If the directory exists but the file
does not exist, creates file

3. If the file exists, overwrites the
file.

BFS file, for
example /a/b/d.c

1. If file exists as a CMS record file,
overwrites it

2. If file does not exist, creates
output file

1. If the directory does not exist,
compilation fails

2. If the directory exists but the file
does not exist, creates file

3. If the file exists, overwrites the
file.

Using Include Files
The #include preprocessor directive allows you to retrieve source statements from secondary input files
and incorporate them into your C/C+ program. A description of the #include directive is provided in
the z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147308/$file/cbclx01_v2r5.pdf). Its syntax is:

#include < filename >

" filename "

Note: On previous compilers, the double slash at the beginning of filename indicated a CMS file. This is
not so for XL C/C++. If you specify it, the CMS minidisks will NOT be searched.

Angle brackets (< >) are used to specify system include files, and double quotation marks (" ") are used to
specify user include files.

When you use the #include directive, you must be aware of:

1. The file-naming conversions performed by XL C/C++ See “Specifying #include File Names” on page
48 for more information on file name conversions performed by XL C/C++.

2. The search order used by XL C/C++ to locate the file (known as the library search sequence).
See “Search Sequences for Include Files” on page 52 for more information on the library search
sequence.

3. The area of the input record containing sequence numbers when including files with different record
formats. See the z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf) for more information on #pragma
sequence.

Chapter 7. Compiling a C/C++ Program 47

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf

Specifying #include File Names
You can use the SEARCH and LSEARCH compiler options to specify search paths for system and user
include files. For more information on these options, see “LSEARCH | NOLSEARCH” on page 27 and
“SEARCH | NOSEARCH” on page 32.

You can specify a file name using the syntax:

/

path

.

qualifier

DD: ddname

Notes:

1. Absolute CMS file names contain a file mode or are ddnames.
2. Absolute BFS file names begin with a leading slash (/) as the first character in filename.

For more information on absolute file names, see “Determining If filename Is In Absolute Form” on page
49 .

When the compiler performs a library search, filename may be treated as a BFS file name or a CMS file
name. This depends on whether a CMS library or a BFS directory is being searched. If filename is treated
as a BFS file name, then no conversions are performed on filename. If, on the other hand, filename is to be
treated as a CMS file name, then the following conversions are performed:

• For the first format:

/

path

.

qualifier

The compiler performs name conversions in the following order:

1. All periods (.) are replaced with blank spaces.
2. Characters up to and including the rightmost slash (/) (if any slashes are present) are deleted from

the file specification.
3. The remaining file specification must be of the form:

filename

filetype

filemode

If there are more than three qualifiers, only the first three are used as the file name, file type and
file mode, beginning with the leftmost qualifier. The remaining ones are ignored. If you specify the
CHECKOUT(PPTRACE) compiler option, a message states what include files the preprocessor is
looking for.

4. All file names and file types are truncated to a maximum of eight characters. File modes are
truncated to two characters.

5. The file mode must be a valid CMS file mode, or an asterisk (*).
6. If a file mode is not specified, the currently accessed disks are searched in the order described under

“Search Sequences for Include Files” on page 52.

48 XL C/C++ for z/VM: 1.3 User's Guide

7. If a file type is not specified, the default is H.
• For the second format:

DD: ddname

1. DD: and ddname are uppercased and truncated to eight characters.
2. Invalid characters are not converted to at signs(@, hex 7c).

Table 5 on page 49 gives the original format of the file name as specified on a #include directive in a
source file, and the actual file name used when XL C/C++ attempts to locate and open the file.

Table 5. Include Directive and Resulting File Names

#include Directive Resulting File Name

#include <stdio.h> STDIO H

#include <Shoe/Sale/Fall.D> FALL D

#include "cprog" CPROG H

#include "utility.h.a" UTILITY H A

Note: If the file is not found on disk A, no further
search is made.

#include "DD:MYSYS" file name on MYSYS DD

Note: The file name associated with the ddname
MYSYS will be used.

#include <DD:PLANLIB> file name on PLANLIB DD

Note: The file name associated with the ddname
PLANLIB will be used.

Determining If filename Is In Absolute Form
The compiler determines if the filename specified in #include is in absolute form as shown in Figure 23
on page 50.

Chapter 7. Compiling a C/C++ Program 49

Figure 23. Testing If filename Is In Absolute Form

 1
The compiler first checks whether the OE option is specified.

 2
If OE is specified, and filename starts with a slash (/), then filename is in absolute form. The compiler
opens the file directly as a BFS file.

 3
If OE is not specified, and the ddname format of the #include directive has been used, the compiler
uses the file associated with the given ddname and directly opens the file. The ddname can point to a
BFS file. The libraries specified in the LSEARCH or SEARCH options are ignored.

 4
If none of the above conditions are true, then the filename is not in absolute format and each opt in
the LSEARCH or SEARCH compiler option determines if the file is a BFS or CMS native file.

For example:

 Options specified:

 OE

Include Directive:

50 XL C/C++ for z/VM: 1.3 User's Guide

 #include "apath/afile.h" NOT absolute, BFS/CMS (no starting slash)
 #include "/apath/afile.h" absolute BFS, (starts with 1 slash)
 #include "a.b.c" NOT absolute, BFS/CMS (no starting slash)
 #include "DD:SYSLIB" NOT absolute, BFS/CMS (no starting slash)
 #include "a.b" NOT absolute, BFS/CMS (no starting slash)

Using LSEARCH and SEARCH
When the filename in a #include directive is not in absolute format, the opts in SEARCH are used to find
system include files and the opts in LSEARCH are used to find user include files. Each opt is a library path
and its format determines if it is a BFS or CMS path as shown in Figure 24 on page 51.

Figure 24. Determining If LSEARCH/SEARCH opt Is BFS Path

 1
If opt is preceded by double slashes (//) and opt does not start with a slash (/), then this path is a CMS
path.

 2
If opt is preceded by double slashes (//) and opt starts with a slash (/), then this path is a BFS path.

 3
If opt is not preceded by double slashes (//) and opt contains a slash (/), then this path is a BFS path.

Chapter 7. Compiling a C/C++ Program 51

 4
If opt is not preceded by double slashes (//) and does not contain a slash (/) and NOOE is specified,
then this path is a non-BFS path.

For example:

Syntax Path

SEARCH(./PATH) Explicit BFS path

OE SEARCH(PATH) Treated as a BFS path

NOOE SEARCH(PATH) Treated as a non-BFS path

OE SEARCH(//PATH) Explicit non-BFS path.

When combining the library with the filename specified on the #include directive, it is the form of the
library that determines how the include filename is to be transformed. For example:

Options specified:

 NOOE LSEARCH(Z, /u/myincs)

Include Directive:

 #include "apath/afile.h"

 Resulting fully qualified include names:

1. AFILE H Z (Z is non-BFS so filename is treated as non-BFS)
2. /u/myincs/apath/afile.h (/u/myincs is BFS so filename is treated as BFS)

The order of specification of the options on the LSEARCH/SEARCH option is the order that is searched.

If no disk is specified, the file mode A will be added to the end of the LSEARCH/SEARCH option.

See “LSEARCH | NOLSEARCH” on page 27 and “SEARCH | NOSEARCH” on page 32 for more information
on these compiler options.

Search Sequences for Include Files
With XL C/C++, you can specify a search path for locating secondary input files. To specify the search
path, you use the LSEARCH and SEARCH compiler options. For details on these compiler options, refer to
“LSEARCH | NOLSEARCH” on page 27 and “SEARCH | NOSEARCH” on page 32.

You can search any currently accessed disk or any MACLIB or BFS directory in any order. By default, if
there is no LSEARCH or SEARCH option specified, the disks will be searched in the standard VM/CMS
order.

If a user include file is not found on the disks or in the MACLIBs or BFS directories specified by the
LSEARCH option, the disks and MACLIBs named in the SEARCH option are also scanned in the standard
VM/CMS order. Only the disks and MACLIBs specified in the SEARCH option are searched for system
include files.

With the NOOE option in effect
Search Sequences for include files are used when the include file is not in absolute form. See
“Determining If filename Is In Absolute Form” on page 49 for a description of the absolute form of
an include file.

If the include filename is not absolute, then the compiler performs the library search as follows:

The search order for system include files is:

1. The search order as specified on the SEARCH option, if any
2. The standard CMS disk search, as long as no file mode was specified on the SEARCH option.

52 XL C/C++ for z/VM: 1.3 User's Guide

The search order for user include files is:

1. The search order as specified on the LSEARCH option, if any
2. The standard CMS disk search, as long as no file mode was specified on the LSEARCH option.
3. The search order for system include files.

For example:

CC ECONOMY (LSEARCH(X,(*.H)=(LIB(ALPHA.MACLIB))) SEARCH(V)

would result in the following search:

Order of Search For System Include Files For User Include Files

First V X

Second W Y

Third X Z

Fourth Y ALPHA MACLIB (for *.H files)

Fifth Z V

Sixth W

With the OE option in effect
Search Sequences for include files are used when the include file is not in absolute form. See
“Determining If filename Is In Absolute Form” on page 49 for a description of the absolute form of
an include file.

If the include filename is not absolute then the compiler performs the library search as follows:

• For system include files:

1. The search order as specified on the SEARCH option, if any
2. The standard CMS disk search, as long as no file mode was specified on the SEARCH option.

• For user include files:

1. If the current source file is a BFS file, the directory of the current source file
2. The search order as specified on the LSEARCH option, if any
3. The standard CMS disk search, as long as no file mode was specified on the LSEARCH option
4. The search order for system include files.

For example, given a file /r/you/cproc containing the following #include directives:

#include "/u/usr/header1.h"
#include "common/header2.h"
#include <header3.h>

And the following options:

OE(/u/crossi/myincs/cproc)
SEARCH(//V, "/new/inc1", "/new/inc2")
LSEARCH("/c/c1", "/c/c2")

Then the include files would be searched as follows:

Chapter 7. Compiling a C/C++ Program 53

Table 6. Examples of Search Order for OpenExtensions

#include Directive Filename Files in Search Order

Example 1.

This is an absolute path name, so no search is performed.

#include "/u/usr/header1.h" 1. /u/usr/header1.h

Example 2.

This is an OpenExtensions system include file with a relative path name. The search starts with the
directory of the parent file or the name specified on the OE option if the parent is the main source file (in
this case the parent file is the main source file so the OE suboption is chosen i.e. /u/crossi/myincs).

"common/header2.h" 1. /u/crossi/myincs/common/header2.h
 2. /c/c1/common/header2.h
 3. /c/c2/common/header2.h
 4. HEADER2 H *
 5. HEADER2 H V
 6. HEADER2 H W
 7. HEADER2 H X
 8. HEADER2 H Y
 9. HEADER2 H Z
10. /new/inc1/common/header2.h
11. /new/inc2/common/header2.h

Example 3.

This is an OpenExtensions system include file with a relative path name. The search follows the order of
suboptions of the SEARCH option.

<header3.h> 1. HEADER3 H V
2. HEADER3 H W
3. HEADER3 H X
4. HEADER3 H Y
5. HEADER3 H Z
6. /new/inc1/common/header3.h
7. /new/inc2/common/header3.h

54 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 8. Binding and Running a C/C++ Program

This chapter gives an overview of how to bind and run C/C++ applications using Language Environment
under VM/CMS. If you are using OpenExtensions, see Chapter 10, “Binding and Running a C/C++ Program
under OpenExtensions,” on page 69.

Language Environment provides a common runtime environment for C, COBOL, and PL/I. For
detailed instructions on binding and running existing and new C/C++ programs under Language
Environment, see the z/VM: Language Environment User's Guide and the z/OS: Language
Environment Programming Reference (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380683/$file/ceea300_v2r5.pdf).

The following examples describe how to bind and run a program under VM/CMS in Language Environment.
Use the following series of commands to:

1. Bind the C and/or C++ text files.
2. Make the Language Environment library available.
3. Run the load module.

To bind and run a C program:

CMOD MYPROG
GLOBAL LOADLIB SCEERUN
MYPROG

Figure 25. CMS Commands to Bind and Run a C Program

To bind and run a C++ program:

CMOD MYPROG (C++
GLOBAL LOADLIB SCEERUN
MYPROG

Figure 26. CMS Commands to Bind and Run a C++ Program

Note: Information on Language Environment is reproduced here for convenience only. For detailed
information on Language Environment, see your Language Environment documentation.

Library Routine Considerations
The Language Environment consists of one component that contains all Language Environment enabled
languages, such as C, COBOL, and PL/I.

The Language Environment is dynamic. That is, many of the functions available in XL C/C++ are not
physically stored as a part of your executable program. Instead, only a small portion of code known as a
stub routine is actually stored with your executable program, and this results in a smaller executable
module size. The stub routines contain code that branches to the dynamically loaded Language
Environment routine.

Creating an Executable Program
Compilation using the CC EXEC produces an object module with file type TEXT. Further processing is
required to produce an executable module. The simplest way to do this is to use the IBM-supplied CMOD
EXEC.

© Copyright IBM Corp. 2003, 2022 55

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf

The CMOD EXEC uses either of the following methods to load one or more object modules (file type TEXT)
into virtual storage, resolve external references, and create an executable module (file type MODULE) on
disk:

• Invoke the Binder.
• Invoke the LOAD and GENMOD CMS commands (and optionally the prelinker).

Note: The Prelinker is not supported for use with XL C/C++.

The method used will depend first of all on the options specified on the CMOD EXEC. Some CMOD options
are Binder specific and some are LOAD/GENMOD/Prelinker specific. If any Binder specific options are
specified, CMOD will use the Binder. If any LOAD/GENMOD/Prelinker specific options are specified, CMOD
will use LOAD/GENMOD/Prelinker. If both types of options are specified, the type specified first will
determine what CMOD uses. Warning messages will then be issued for the other type. If no Binder specific
or LOAD/GENMOD/Prelinker specific options are specified, CMOD will check the value of the _CNAME
environment variable in the CENV group of GLOBALV. If this is set to CBXFINIT, which indicates that XL
C/C++ is being used, CMOD will use the Binder. Otherwise, it will use LOAD/GENMOD/Prelinker. Refer to
Table 7 on page 57 for more information on CMOD options.

Before using the CMOD EXEC, you should issue a GLOBAL TXTLIB for any user libraries that contain
objects that you want to include.

Note: If your application performs long double arithmetic, you must have the CMSLIB TXTLIB available.

The general form of the CMOD EXEC is:

CMOD textname

(option

textname
is the name of an object module generated by the CC EXEC.

Note: The file containing the function main should be the first file named in the CMOD EXEC. The compiler
verifies that main exists by creating a special CSECT that references main.

To specify the name of the executable module, use the MODNAME option of the CMOD EXEC. The CMOD
EXEC stores the executable module in a file specified on the MODNAME option. If you do not explicitly
name the file in which you want the executable module to be stored, the name of the first object module
specified on the CMOD EXEC will be used as the default.

Language Environment Sidedeck Files and TXTLIBs
The CMOD EXEC automatically sets up the appropriate GLOBAL TXTLIB commands and accesses the
appropriate sidedeck files to properly create both non-XPLINK and XPLINK C and C++ programs. If you
wish to create these without using the CMOD EXEC, that is invoking the Binder yourself, you must also
execute the necessary GLOBAL TXTLIB commands prior to invoking the Binder and make the necessary
sidedeck files available as primary input to the Binder, as follows:

• For non-XPLINK C programs:

GLOBAL TXTLIB SCEELKED
Sidedeck file(s): none

• For XPLINK C programs:

GLOBAL TXTLIB SCEEBND2
Sidedeck file(s): CELHS003 CELHS001

• For non-XPLINK C++ programs:

56 XL C/C++ for z/VM: 1.3 User's Guide

GLOBAL TXTLIB SCEELKED SCEECPP
Sidedeck file(s): C128

• For XPLINK C++ programs:

GLOBAL TXTLIB SCEEBND2
Sidedeck file(s): CELHSCPP CELHS003 CELHS001 C128

The sidedeck files are on the Language Environment disk with a file type of TEXT.

CMOD Options
Table 7. CMOD options

Option Description

Binder specific options

BINDOPTS(options) Specifies options for the Binder. These options may be any of the
options supported by the Binder. For complete descriptions of these
options, see the z/VM: Program Management Binder for CMS.

C++ Specifies that at least one of the text decks is C++. This must be
specified for C++ code to be correctly linked.

DLL(side_file_names) If a side file name is not specified, this just passes the DYNAM DLL
option to the Binder. It is the same as specifying BINDOPTS(DYNAM
DLL), which enables the module for dynamic linking. A definition
side file will be produced with the same name as the first text deck
name, and a file type of SYSDEFSD.

If a side file name is specified, the DYNAM DLL option is still passed
to the Binder, but also the Binder will process the definition side file
specified. An 8-character CMS file name is specified. CMOD will look
for that file name with a file type of SYSDEFSD. Multiple names can
be specified, separated by blanks.

For information about this option, see the z/VM: Program
Management Binder for CMS.

For more information about DLLs (Dynamic Link Libraries), see
the section about building and using DLLs in the z/OS: XL C/C+
+ Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf) and
the sections about binder processing in the z/OS: XL
C/C++ User's Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf).

XPLINK Specifies that the text deck(s) has been compiled with the XPLINK
option. Generally speaking, XPLINK text decks cannot be bound with
non-XPLINK text decks.

LOAD/GENMOD/Prelinker specific options

AMODE Specifies the addressing mode in which the program will be entered
in a virtual machine. For a complete description of AMODE, see the
LOAD command in the z/VM: CMS Commands and Utilities Reference.

AUTO|NOAUTO Specifies that your disks are to be searched for TEXT files for use in
resolving undefined references.

Chapter 8. Binding and Running a C/C++ Program 57

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf

Table 7. CMOD options (continued)

Option Description

CPLINK(options) Specifies options for the Prelinker.

Note: The Prelinker is not supported for use with XL C/C++.

DUP|NODUP Specifies that an error message is to be generated if duplicate CSECT
names are encountered. If you want to ensure that only one copy of
a object module is loaded, use the NODUP option.

GENMOD(options) Passes any options to the GENMOD command.

INV|NOINV Specifies that invalid card images are not to be included in the load
map.

LET|NOLET Specifies that all LOAD errors for the load module are to be ignored
and an attempt to generate a module will be made.

ORIGIN Specifies where CMS loads the program. This location must be in the
CMS transient area or in any free CMS storage.

RLD|NORLD Specifies that relocation directory information is to be saved in the
load module.

STR|NOSTR Specifies that storage is to be initialized during the generation of the
executable module.

RMODE Specifies where the program is to reside in a virtual machine with
greater than 16MB of storage. For a complete description of RMODE,
see the LOAD command in the z/VM: CMS Commands and Utilities
Reference.

Common options

MAP|NOMAP The specified option is passed to the Binder or the LOAD command.
For MAP (which is the default), the Binder will incorporate a module
map into the SYSPRINT output (see the z/VM: Program Management
Binder for CMS. for more information); the LOAD command will
generate a load map file on your A disk with the name LOAD MAP
A.

MODNAME(modulename) The default is to generate an executable module having the same file
name as the first object module specified, a file type of MODULE, and
a file mode of A. The MODNAME option allows you to give a specific
name to the executable module. If you specify this option, CMOD
creates an executable module named modulename MODULE A.

58 XL C/C++ for z/VM: 1.3 User's Guide

Examples

KNOWN: - Only one object module is to be loaded.
 - The object module to be loaded has file name
 PRODUCE, file type TEXT, and file mode A.
 - Default options and file names are to be used.

USE THE FOLLOWING COMMAND:
 CMOD PRODUCE

Note: File type and file mode are not specified on the CMOD EXEC.

Figure 27. Example 1 - Using the CMOD EXEC

KNOWN: - The two object modules to be loaded are:
 - GRAPHING TEXT A
 - TRIG TEXT A
 - GRAPHING TEXT A contains the main().
 - A load module map is to be generated.
 - The load module produced is to be called MATH MODULE A.

USE THE FOLLOWING COMMAND:
 CMOD GRAPHING TRIG (MODNAME(MATH) MAP

Figure 28. Example 2 - Using the CMOD EXEC

KNOWN: - Only one object module is to be loaded.
 - The object module to be loaded has file name
 DLLA07, file type TEXT, and file mode A.
 - The load module is to be a DLL
 - Default options and file names are to be used.

USE THE FOLLOWING COMMAND:
 CMOD DLLA07 (DLL
Note: A definition side file with name DLLA07 and type SYSDEFSD
 will be produced on the A disk.

Figure 29. Example 3 - Using the CMOD EXEC

KNOWN: - Only one object module is to be loaded.
 - The object module to be loaded has file name
 C955A07, file type TEXT, and file mode A.
 - C955A07 calls functions in the DLLA07 DLL.
 - There is a definition side file called DLLA07 SYSDEFSD.
 - Default options and file names are to be used.

USE THE FOLLOWING COMMAND:
 CMOD C955A07 (DLL(DLLA07)

Figure 30. Example 4 - Using the CMOD EXEC

Using the LOAD and GENMOD Commands
Note: This method of creating an executable program cannot be used for C text files that were compiled
with either the LONGNAME or RENT options, or for C++ text files. These text files need to be processed by
the binder to resolve writable static references and/or map long internal names to short external names.

The loader can also be invoked under VM/CMS by using the LOAD command processor. For complete
information about the LOAD, INCLUDE, and GENMOD commands, see the z/VM: CMS Commands and
Utilities Reference.

Chapter 8. Binding and Running a C/C++ Program 59

Compilation using the CC command produces an object module with the file type TEXT. To run the
program, you must load the object module to form a load module before you can execute it.

The LOAD command invokes the loader, which loads one or more object modules and creates an
executable module in virtual storage.

Note that the object modules you are loading with the LOAD command must have a file type of TEXT. If
you are loading several object modules, the file names must be separated by at least one blank. You can
also specify load options following the input file names. If you want to specify more than one load option,
the options must be separated by blanks.

Default options for the LOAD command are described in the z/VM: CMS Commands and Utilities Reference.

The general form of the LOAD command is:

LOAD filename1 filename2 ... (options

Note: If the main program is C, you should include RESET CEESTART under the options for the LOAD
command. The object module that contains the main must be the first one specified.

To store the executable module that was created by the loader in a file, use the GENMOD command. The
GENMOD command will take a copy of the executable module in virtual storage and store it with the file
name specified on the GENMOD command. Only the file name is required on the GENMOD command.

The general form of the GENMOD command is:

GENMOD filename (options

Notes:

1. If you specify a file type, it must be MODULE.
2. If the main program is C, then under the options for the GENMOD command, you should include FROM
CEESTART.

If you do not explicitly name the file in which you want the load module to be stored, the GENMOD
command processor defaults to the name of the first entry point in the load map. The following example
shows you how to override the default to produce a load module with a user-specified file name.

KNOWN: - Three object modules are to be loaded:
 - IMPORTS TEXT A
 - EXPORTS TEXT A
 - FORMULA TEXT A
 - The load module is to be called GNP MODULE A.
 - The main procedure is in IMPORTS.
 - Default options are to be used.

USE THE FOLLOWING COMMAND:
 GLOBAL TXTLIB SCEELKED CMSLIB
 LOAD IMPORTS EXPORTS FORMULA (RESET CEESTART
 GENMOD GNP (FROM CEESTART

Figure 31. Using the LOAD and GENMOD commands

For more information on linking modules for interlanguage calls, see the z/OS:
Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

Using the BIND Command
The BIND command invokes the z/VM Program Management Binder for CMS, which encompasses the
functionality of the Prelinker, the LKED command, and the LOAD and GENMOD commands. In addition, it
supports the Program Object format which is required for some compiler options such as XPLINK.

60 XL C/C++ for z/VM: 1.3 User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

The Prelinker is not supported for use with XL C/C++. Any C programs which use the RENT or LONGNAME
options, or any C++ programs must use the Binder to create an executable module.

For more information about the Program Management Binder for CMS, see the z/VM: Program
Management Binder for CMS and the sections about binder processing in the z/OS: XL C/C+
+ User's Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/
cbcux01_v2r5.pdf).

Using the LKED Command
The LKED command is used to create a member of a CMS load library. CMS load libraries, like
text libraries, are in CMS partitioned data set formats. Text libraries contain applications that contain
unresolved external references to other routines. Load libraries, on the other hand, contain applications
with external references that have already been resolved, thus saving overhead every time the application
is loaded.

Your TEXT file is input to the LKED command. If your application calls a subroutine with object code
stored as a separate TEXT file or as a member of a text library, you must define the files that contain the
subroutines used by your application with a FILEDEF command.

After you issue the appropriate FILEDEF commands, issue the LKED command as follows:

LKED filename

(NAME membname

(NAME membname LIB libname

(LIB libname

filename
is the name of the TEXT file that contains your object code and/or linkage editor control cards.

NAME membname
specifies the member name to be used for the load module that is created.

LIB libname
specifies the name of the LOADLIB file where the resulting load module is placed.

The following example causes the automatic call library to search SCEELKED to resolve external
references, creates a load library member named PROGRAM1, and stores it in a CMS load library with
the name USERLOAD.

FILEDEF SYSLIB DISK SCEELKED TXTLIB E
LKED PROGRAM1 (NAME PROGRAM1 LIB USERLOAD

Using FILEDEF to Define Input and Output Files
If your program opens files by ddname (fopen("DD:INFILE","r");), you must issue a corresponding
FILEDEF prior to executing your program. The FILEDEF command relates the ddname of the input or
output file specified in your application with an I/O device. For example, if PROGRAM1 contains a ddname
of an input file stored on your A disk as MYDATA INPUT, issue the following command:

 FILEDEF infile DISK MYDATA INPUT A

where infile is the ddname of the input file specified in PROGRAM1.

Preparing a Reentrant Program
Reentrancy allows more than one user to share a single copy of a load module or to repeatedly use a load
module without reloading it.

Chapter 8. Binding and Running a C/C++ Program 61

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147307/$file/cbcux01_v2r5.pdf

Reentrant programs can be categorized by their reentrancy type as follows:

• Natural reentrancy - Programs that contain no writable static and do not require additional processing
to make them reentrant.

• Constructed reentrancy - Programs that contain writable static and require additional processing to
make them reentrant.

Note: All C++ programs use constructed reentrancy. They cannot be compiled with the NORENT option.

Writable static is storage that changes and is maintained throughout program execution. It is made up of:

• All program variables with the static storage class.
• All program variables receiving the extern storage class
• All writable strings

Note: If your program contains no writable strings and none of your static or extern variables are updated
in your application (that is, they are read only), your program is naturally reentrant.

To generate a reentrant load module, you must follow these steps:

1. If your program contains writable static, you must compile all your C source files using the RENT
compiler option.

If you are unsure about whether your program contains writable static, compile it with the RENT
option. Invoking the Binder with the MAP option and the object module as input produces a module
map. Any writable static data in the object module appears in the writable static section of the map.

2. Use the Binder to combine all input object modules into a single output object module.
3. Optionally, do one of the following:

• Have your system programmer link/install your program into a discontiguous saved segment
(DCSS). For information about using saved segments, see the z/VM: Saved Segments Planning and
Administration.

• Install your program as a nucleus extension by using the VM/CMS NUCXLOAD command. For more
information about the NUCXLOAD command, see the z/VM: CMS Commands and Utilities Reference.

You do not need to install your program to run but if you do not, you will not gain all the benefits of
reentrancy.

Linking Modules for Interlanguage Calls
For information on link-editing modules for interlanguage calls, see the z/OS:
Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

Running a Program
Once you have compiled and loaded your C/C++ program, you can run it one of two ways:

1. Using the file name of the load module. For example:

TESTRUN

2. Using the START command immediately after a LOAD or LOADMOD command. For example:

LOADMOD TESTRUN
START

Making the Runtime Libraries Available for Execution
The Language Environment must be available at run time for your application to use the dynamic library
routines. The following sections describe how to make these libraries available to your programs.

62 XL C/C++ for z/VM: 1.3 User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Making the Language Environment Library Available for VM/CMS
The C specific portions of the Language Environment are in modules CEEEV003, CELHV003 and EDCZ24.
CEEEV003 is the main C runtime module for non-XPLINK programs, CELHV003 is the main C runtime
module for XPLINK programs, and EDCZ24 is the I/O routine module.

These can be loaded as nucleus extensions, discontiguous saved segments (DCSSs), or directly from the
Language Environment minidisk or directory. Nucleus extensions and DCSSs offer improved performance.

Other portions of the Language Environment dynamic environment are on the Language Environment
minidisk or directory in the form of separate modules and the SCEERUN loadlib. The modules can also
be loaded as nucleus extensions or DCSSs. The loadlib needs to be accessed with the GLOBAL LOADLIB
command. For example:

GLOBAL LOADLIB SCEERUN

Search Sequence for Library Files
The search order for the library files is:

1. Nucleus extension
2. Saved segment
3. LOADLIB

For best performance, the library should be loaded as a nucleus extension.

Specifying Runtime Options
Each time a C/C++ program is run, values must be established for a set of C/C++ runtime options. These
options affect many of the properties of a C/C++ program's execution, including its performance, its error
handling characteristics, and its production of debugging and tuning information.

If the EXECOPS runtime option is in effect and if you want to specify additional runtime options on the
command line, specify the options, followed by a slash (/), followed by the parameters you want to pass to
the main function.

If the NOEXECOPS runtime option is in effect, any arguments and options that you specify on the
command line (including the slash, if present) are passed as arguments to the main function. Runtime
options are described in “Specifying Runtime Options” on page 39.

Each time the program is run, the default runtime options selected during C/C++ installation apply unless
overridden by options specified in a #pragma runopts directive in your source program or by command
line options specified at the time of program execution.

Runtime options are specified using the runopts pragma or in the parameter-string on the command line
when you invoke your C/C++ program. The parameter-string contains two fields separated by a slash(/),
and takes the form:

[runtime options/][parameter string]

The first field is passed to the program initialization routine as a runtime option list; the second passes
to the main function. If you do not specify any runtime options but want to pass arguments, you must
precede the arguments with a slash.

The following example shows you how to specify runtime options and pass arguments when you invoke
your program under VM/CMS.

Chapter 8. Binding and Running a C/C++ Program 63

KNOWN: - The load module to be executed is called SURVEY MODULE A.
 - You want to pass the words THIS IS A TEST to
 the program.
 - The messages generated by the runtime library
 will be received in Japanese.

USE THE FOLLOWING COMMAND:
 SURVEY LANG(JA)/THIS IS A TEST

Figure 32. Running under CMS

Message Handling
By default, all C/C++ programs (including the compiler) set emsg off so that VM/CMS messages generated
during normal execution of C library functions are not output to the terminal along with stdout and
stderr. The C system function restores the emsg setting, issues the given command in the system call,
and sets emsg off again.

Use the setenv() function to set emsg via the C environment variable _EDC_KEEP_EMSG, as follows:

setenv("_EDC_KEEP_EMSG","Y",1);

This environment variable restores the emsg setting to its value prior to the execution of the C program,
and keeps that value while the program is running.

There are four ways to get XL C/C++ to leave the emsg setting on. This allows any messages produced by
VM/CMS during execution of your program to be displayed.

• Issue the CMS command GLOBALV SELECT CENV SET _EDC_KEEP_EMSG Y.
• Modify the user exit CEEBINT to issue a setenv("_EDC_KEEP_EMSG","Y",1) and link this with your

executable module.
• Create a variable length file with a line of the following format. (Spaces are not permitted.)

_EDC_KEEP_EMSG=Y

Create a FILEDEF EDCENV DISK fn ft fm for the same file. During initialization of the root
main program, XL C/C++ opens the file associated with the ddname EDCENV and sets the appropriate
environment variables.

• Issue a setenv("_EDC_KEEP_EMSG","Y",1) in your program. This restores emsg to the value in
effect when your program was invoked.

The environment variable may be set any time in a C program, or may be set in the runtime user exit
CEEBINT.

If the emsg setting is changed via a system() call once _EDC_KEEP_EMSG has been set, then the new
emsg setting will be maintained even after the C program terminates.

For additional information on the setenv() library function, see the XL C/C++ for
z/VM: Runtime Library Reference. For more information on environment variables, see the
z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147315/$file/cbcpx01_v2r5.pdf). Additional information on runtime user exits in XL C/C++
is also available in the z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

64 XL C/C++ for z/VM: 1.3 User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

Chapter 9. Compiling a C/C++ Program under
OpenExtensions

This chapter describes how to compile C/C++ programs under OpenExtensions using the OpenExtensions
c89 and cxx utilities. For detailed information regarding the c89/cxx utility options and operands, see
the z/VM: OpenExtensions Commands Reference.

The c89/cxx utilities call the XL C/C++ compiler. You must have access to the Language Environment
C/C++ runtime library, because the compiler calls functions in the library to compile the code.

Compiling with c89/cxx
An OpenExtensions C/C++ application program with source code in BFS files or CMS native files must be
compiled to create output object files residing either in BFS files or z/VM record files.

Application source code can be compiled and built at one time or compiled and then bound at another
time with other application source files or compiled objects.

To compile and build an OpenExtensions application program from the OpenExtensions shell, use the c89
or cxx utility.

Note: All references to c89 also apply to cxx unless otherwise specified.

The syntax for cxx is the same as for c89. The syntax is:

c89 [-options ...] [file.c ...] [file.a ...] [file.o ...] [-l libname]

options
specifies one or more of the c89 options described in “c89 Selectable Compiler Settings” on page 35.

file.c
specifies the name of the source file.

file.o
specifies the name of the object file.

file.a
specifies the name of the archive file.

libname
is name of the archive library.

Note: You can use the c89 utility to compile and build application program source and objects from within
the shell or directly from CMS. If you use c89, you must keep track of and maintain all the source and
object files for the application program. However, you can take advantage of the make utility and create
makefiles to maintain your OpenExtensions application source and object files automatically when you
update individual modules. The make utility runs c89 for you. However, make must be run from the shell.

For more information on using the make utility, see Chapter 15, “OpenExtensions ar and make Utlities,”
on page 101 and z/VM: OpenExtensions Advanced Application Programming Tools.

To compile source files without binding them, enter the c89 command with the -c option to create
object file output. Use the -o option to specify placement of the application program executable file to
be generated. The placement of the intermediate object file output depends on the location of the source
file:

• If the C/C++ source module is a BFS file, the object file is created in the working directory.
• If the C/C++ source module is a CMS native file, the object file is created as a CMS native file. The object
file is placed in the CMS minidisk or SFS directory accessed as file mode A.

© Copyright IBM Corp. 2003, 2022 65

For example, if the C/C++ source is in a minidisk file named USERSRC C B, the object is placed in the
file USERSRC TEXT A. Because the CMS file ID is always converted to uppercase, you can specify it in
lowercase or mixed case.

• Compiling application source to produce only object files.

– To compile C/C++ source to create the default object file usersource.o in your working BFS
directory, specify:

 c89 -c usersource.c

– To compile C/C++ source to create an object file as a file on the A disk, specify:

 c89 -c //approg.c

• Compiling and binding application source to produce an application executable file.

– To compile an application source file to create the object file usersource.o in the BFS working
directory and the executable file mymod.out in the /app/bin directory, specify:

 c89 -o /app/bin/mymod.out usersource.c

– To compile the C source file MAINBAL C on the B disk and build it to produce the application
executable file /u/parker/myappls/bin/mainbal.out, specify:

 c89 -o /u/parker/myappls/bin/mainbal.out //mainbal.c.b

Compiler Selection
By default, the c89 utility calls the XL C/C++ compiler (or the IBM C/C++ for z/VM compiler, whichever is
installed). If you had previously set c89 to call the IBM C for VM/ESA compiler and want to change to the
XL C/C++ compiler, issue the following command to specify the C/C++ compiler module (CBXFINIT) on
the _CNAME environment variable in the CENV group of GLOBALV:

globalv select cenv setlp_cname cbxfinit

This will also cause c89 to call the Binder instead of the Prelinker.

To use the IBM C for VM/ESA compiler instead of the XL C/C++ compiler, you can specify the C compiler
module (CBC310) by issuing the following command:

globalv select cenv setlp_cname cbc310

The cxx utility ignores the setting of the _CNAME environment variable and always calls the CBXFINIT
module.

Compiling and Building in One Step with c89/cxx
To compile and build an OpenExtensions C/C++ application program in one step to produce an executable
file, specify the c89/cxx utility without specifying the -c option.

Note: To compile source files without building them, use the c89 -c option. This will create object files
only.

You can use the -o option with the command to specify the name and location of the application program
executable file to be created.

• To compile and build an application program source file to create the default executable file a.out in
the BFS working directory, specify:

 c89 usersource.c

66 XL C/C++ for z/VM: 1.3 User's Guide

• To compile and build an application source file to create the mymod.out executable file in
your /app/bin directory, specify:

 c89 -o /app/bin/mymod.out usersource.c

• To compile and build several application source files to create the mymod.out executable file in
your /app/bin directory, specify:

 c89 -o /app/bin/mymod.out usersource.c ottrsrc.c //pwapp.c

• To compile and build an application source file to create the MYLOADMD module file on your A disk
specify:

 c89 -o //myloadmd.module usersource.c

• To compile and build an application source file with a previously compiled object file to create the
executable file zinfo in your /approg/lib BFS directory, specify:

 c89 -o /approg/lib/zinfo usersource.c existobj.o //pwapp.c

Using the make Utility
You can use the OpenExtensions shell make utility to control your OpenExtensions C/C++ application's
parts. The make utility calls the c89 utility by default to compile and bind the programs specified in the
previously created makefile.

The /etc/startup.mk file contains the make default rules.

For example, if you have the file /u/jake/appwrk/makefile.c that contains the dependencies for
your C application program primappl and you make changes to the source file subordpgm.c, you can
recompile the application by entering:

 cd appwrk
 make -f makefile.c

The result is the same as if you had entered:

 c89 -O -o primappl ./appwrk/subordpgm.c

Note: The OpenExtensions make utility requires that any application program source files to be
"maintained" through use of a makefile reside in BFS files. To compile and build C/C++ source files that
are in CMS native files you must use the c89 utility directly.

For a description of the make utility, see the z/VM: OpenExtensions Commands Reference. For a detailed
discussion on how to create and use makefiles to manage application parts, see the z/VM: OpenExtensions
Advanced Application Programming Tools.

Chapter 9. Compiling a C/C++ Program under OpenExtensions 67

68 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 10. Binding and Running a C/C++ Program
under OpenExtensions

This chapter describes how to bind and run C/C++ programs under OpenExtensions.

The interfaces to the CMS module build facilities for OpenExtensions C/C++ applications are the
OpenExtensions c89 and cxx utilities. You can use c89/cxx to compile and build an OpenExtensions
C/C++ application program in one step or bind application object files after compilation. For more
information on compiling with the c89/cxx utility, refer to Chapter 9, “Compiling a C/C++ Program under
OpenExtensions,” on page 65.

Note: All references to c89 in the following sections also apply to cxx unless otherwise specified.

Using the c89 Utility to Bind and Create Executable Files
To bind an OpenExtensions C/C++ application program's object files to produce an executable file, specify
the c89 utility and pass it object files (file.o BFS files or CMS native files). The c89 utility recognizes
that these are object files produced by previous C/C++ compilations and does not invoke the compiler for
them.

To compile source files without binding them, use the c89 -c option to create object files only.

You can use the -o option with the command to specify the name and location of the application program
executable file to be created.

• To bind an application program object file to create the default executable file a.out in the working
directory, specify:

 c89 usersource.o

• To bind an application object file to create the mymod.out executable file in the app/bin directory,
relative to your working directory, specify:

 c89 -o ./app/bin/mymod.out usersource.o

where usersource.o is the object file created by compilation with c89.
• To bind several application object files to create the mymod.out executable file in the app/bin

directory, relative to your working directory, specify:

 c89 -o ./app/bin/mymod.out usersrc.o othersrc.o

• To bind an application object file to create the MYLOADMD module file on the A disk specify:

 c89 -o //myloadmd.module usersource.o

• To compile and bind an application source file with several previously compiled object files to create the
executable file zinfo in the approg/lib subdirectory, relative to your working directory, specify:

 c89 -o ./approg/lib/zinfo usersrc.c existobj.o //pgmobj.text

c89 Binder Options
The c89 and cxx utilities specify default values for some Binder options. They also pass Binder options
by using the -W option. For more information on using the c89 options, see Chapter 5, “Compiler Options
under OpenExtensions,” on page 35.

© Copyright IBM Corp. 2003, 2022 69

Binder Options
c89 uses the following Binder options, all of which can be overridden using the -W option:

CASE MIXED TERM DISK

cxx uses the following Binder options:

CASE MIXED TERM DISK RENT DYNAM DLL

The following example shows how to use the -W option to pass a Binder option.

 c89 -Wb,b,map,case,upper hello.c

For more information about Binder options, see z/VM: Program Management Binder for CMS.

Specifying Runtime Options under OpenExtensions
If you have an OpenExtensions C/C++ application program executable file in the byte file system (BFS),
you cannot run the executable file by simply entering its name on the CMS command line, as you would a
traditional CMS application program. Instead, you can execute the application by specifying its name on
the CMS command OPENVM RUN. However, OPENVM RUN does not support passing of runtime options to
the application.

Runtime options, needed for the OpenExtensions application program residing in the BFS, can be passed
from a #pragma runopts preprocessor directive at compile time. When runtime options are specified in
this way a CEEUOPT control section (CSECT) is created and is linked with the application program by the
c89 utility. Because only one CEEUOPT CSECT can be linked with an application program, you should code
a #pragma runopts directive in the compilation unit for the main() function. For more information
about #pragma runopts, refer to “Runtime Options Using Language Environment” on page 39.

Note: Also, you can create a CEEUOPT CSECT as a separate step using the CEEXOPT macro and bind the
CSECT with the application program object files using c89.

Running under OpenExtensions
This section discusses how to run your OpenExtensions C/C++ application program executable files on
the z/VM system.

OpenExtensions Application Program Environments
OpenExtensions supports the following environments, from which you can run your OpenExtensions C/C+
+ application programs:

• OpenExtensions shell
• CMS

Placing a CMS Application Program Load Module in the File System
If you have an OpenExtensions C/C++ application program executable file as a CMS native file and want to
place it in the BFS, you can use the following OpenExtensions CMS commands to copy the file into a BFS
file:

• OPENVM PUTBFS

For a description of this command, see the z/VM: OpenExtensions Commands Reference. For examples of
using this command to copy CMS files into BFS, see the z/VM: OpenExtensions User's Guide.

70 XL C/C++ for z/VM: 1.3 User's Guide

Running a CMS Module from the OpenExtensions Shell
If your OpenExtensions C/C++ program is a CMS module file on a minidisk or in the shared file system,
you can invoke it from the shell by using the cms command. For example, to run PROG1 MODULE A,
execute the following command:

 cms prog1

If you want to make the module file transparent to the shell, you need to create an external link in the
BFS that points to the file. For example, to run PROG1 MODULE A, you can create a file in the BFS that
represents the module by using the following command:

 openvm create extlink /u/mydir/prog1 cmsexec PROG1 MODULE A

You can run the module transparently from the shell by using the following command:

 prog1

For more information on creating external links, see the z/VM: OpenExtensions Commands Reference.

Running an OpenExtensions XL C/C++ Application Executable File from the
OpenExtensions Shell

If the application executable file is a BFS file, you must either run it from the shell interactively or invoke it
indirectly through the CMS command OPENVM RUN.

Issuing the Executable Filename from the Shell
Before a BFS program can be run in the OpenExtensions shell, it must be given the appropriate mode
authority for a user or group of users to run it. You can update the mode authority for an executable
program file by using the chmod command. See the z/VM: OpenExtensions Commands Reference for the
format and description of chmod.

After you have updated the mode authority, enter the program name from the OpenExtensions shell
command line. For example, if you want to run the program datcrnch from your working directory, you
have the directory where the program resides defined in your search path, and you are authorized to run
the program, enter:

 datcrnch

Issuing a Setup Shell Script Filename from the Shell
To run an OpenExtensions shell script that sets up an OpenExtensions executable file and then runs
the program, give the appropriate mode authority for a user or group of users to run it. You can update
the mode authority for a shell script file by using the chmod command. See the z/VM: OpenExtensions
Commands Reference for the format and description of chmod. After mode authority has been given, enter
the script filename from the OpenExtensions shell command line.

Chapter 10. Binding and Running a C/C++ Program under OpenExtensions 71

72 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 11. Object Library Utility

This chapter describes how to use the Object Library Utility to update libraries of object files. On VM/CMS,
a library is a text library (TXTLIB) with object files as members.

Object libraries provide convenient packaging of object files. With the Object Library Utility, a library can
contain objects files compiled with long names, short names, writable static data, or XPLINK. The Object
Library Utility stores source member symbol information with different attributes. This information is
stored in two special members of the library, the Basic Directory Member (@@DC370$) and the Enhanced
Directory Member (@@DC390$). Both are referred to in this chapter as the C370LIB directory.

Note: The TXTLIB command under VM/CMS also creates object libraries but you cannot include external
names longer than 8 characters. The syntax for the Object Library Utility is similar to the TXTLIB
command.

Commands to add object files to a library, to delete object files from a library, or to build the C370LIB
directory for a library are available. Use the DIR command to build the C370LIB directory for a library of
object files. Use the MAP command to list the contents of the C370LIB directory.

Creating an Object Library under VM/CMS
You use the C370LIB EXEC to create an object library.

C370LIB

GEN libname fn

(FILENAME

ADD libname fn

(FILENAME

DEL libname membername

MAP libname

DIR libname

GEN
creates a TXTLIB on your A disk. If a TXTLIB with the same name already exists, it is replaced.

ADD
adds TEXT files as members to an existing TXTLIB on a read/write disk. No checking is done for
duplicate names, entry points, or CSECTs.

DEL
deletes members from a TXTLIB on a read/write disk and compresses the TXTLIB to remove unused
space. If more than one member exists with the same name, only the first entry is deleted.

MAP
lists the names (entry points) of TXTLIB members.

MAP produces a file, libname MAP, on your A disk. See “Object Library Utility Map” on page 75 for
more information on the map.

© Copyright IBM Corp. 2003, 2022 73

DIR
builds the C370LIB directory. The C370LIB directory contains the names (entry points) of library
members.

The DIR function is only necessary if TEXT files were previously added or deleted from the TXTLIB
without using C370LIB.

libname
specifies the file name of a file with a file type of TXTLIB, which can be one of the following:

• Library to be created or listed
• Library to which members are to be added
• Library from which members are to be deleted
• Library for which a C370LIB directory is to be built

fn
specifies one or more names of files with file types of TEXT, that you want to add to a TXTLIB.

membername
specifies one or more names of TXTLIB members that you want to delete.

FILENAME
indicates that all the specified file names (fn ...) will be used as the member names for their respective
entries in the TXTLIB file.

C370LIB must be used to update a TXTLIB with TEXT files produced by compiling C programs with the
LONGNAME option, or compiling C++ programs. The VM/CMS TXTLIB command cannot be used to do this
directly, and an error can result if this is attempted.

When a TEXT file is added to a library, its member name is selected according to the following hierarchy:

1. From the file name, if the FILENAME option is specified
2. From the NAME control statement, if present, in the TEXT file
3. From the file name.

The CMS TXTLIB command GEN, ADD, and DEL functions are used as part of the C370LIB GEN, ADD
and DEL functions. Thus, any TXTLIB restrictions apply also to C370LIB unless otherwise stated. For
information about the TXTLIB command, see the z/VM: CMS Commands and Utilities Reference.

Members must be deleted by their member name. Any attempt to delete a member using a name other
than the member name will result in a warning message.

In the following example, the C programs SUB1 C and SUB2 C are compiled with the LONGNAME
option. The function library, SUBLIB TXTLIB A, is created with SUB1 TEXT using the GEN command
of C370LIB, the Object Library Utility. SUB2 TEXT is added to the library using the ADD command.

 CC SUB1 (LO
 CC SUB2 (LO
 C370LIB GEN SUBLIB SUB1
 C370LIB ADD SUBLIB SUB2

LINKLOAD EXEC
The IBM-supplied LINKLOAD EXEC will generate a fetchable member of a VM/CMS load library.

LINKLOAD textfile (LIB libname

option

74 XL C/C++ for z/VM: 1.3 User's Guide

textfile
specifies one or more names of the input text files. The file type of the object files must be TEXT, and
the source programs must have contained a #pragma linkage(name,FETCHABLE) preprocessor
directive. Note that you do not specify the file type or the file mode when using the LINKLOAD EXEC.

libname
specifies the name of the library where the load member is to be stored.

option
specifies the options you want to apply when you are generating the fetchable load library member:
MBR

Specifies that the next argument, memname, is the name of the member within the load library
that is to be generated. If you do not specify a member name, the name of the text file containing
the fetchable code is used.

CPLINK options
Passes options to the Prelinker. CPLINK is called if it is required by the text file or if a CPLINK
option is given.

Note: The Prelinker is not supported for use with XL C/C++.

LKED
Specifies that the options following it are to be passed to LKED. If you do not use this option,
default options are used.

Only one of the following options can be specified on a given invocation of LINKLOAD:
ADD

Specifies that the load member generated by the LINKLOAD EXEC is to be added to the load
library. If a member by the same name already exists, the new member will not be added.

REPLACE
Specifies that the load member generated by the LINKLOAD EXEC is to replace the member
having the same name in the load library. If a member by the same name does not exist, the new
member is added.

NEW
Specifies that if a load library of the given name exists, then it is erased, and a new load library
containing the new member is created.

Object Library Utility Map
The Object Library Utility produces a listing for a given library when the MAP command is specified. The
listing contains information on each member of the library. A representative example is shown in Figure
33 on page 76.

Chapter 11. Object Library Utility 75

==
| Object Library Utility Map | 1
| |
|C370LIB:5741A09 V7 R3 M00 IBM z/VM 2022/09/28 21:19:26|
|==

 Library Name: TS41949.A.OBJECT 2022/09/28 21:19:26

--
* Member Name: ASMSTUFF (D) 2022/09/28 21:19:26 * 2
* 569623400 R01 M01 *
--

 (S) External Name: CSECT1
 (S) External Name: ENTRY1

--
* Member Name: CSTUFF (D) 2022/09/28 21:19:26 * 2
* 5694A01 V1 R02 *
--

 (L) Function Name: foo
 (WL) External Name: this_int_is_in_writable_static_and_its_name_will
 _wrap_because_it_is_too_long

--
* Member Name: CXXSTUFF (D) 2022/09/28 21:19:26 * 2
* 5694A01 V1 R02 *
--

 3 User Comment: This is a user comment in CXXSTUFF

 4 (L) Function Name: testeh()
 (L) Function Name: f1()
 (L) Function Name: operator++(U&)
 (WL) External Name: i1
 (WL) External Name: i2

========= E N D O F O B J E C T L I B R A R Y M A P ==========

Figure 33. Object Library Utility Map

 1 Map Heading
The heading contains the product number, the compiler release number, the compiler version number,
and the date and time the Object Library Utility step commenced. The name of the library immediately
follows the heading. To the right of the name of the library is the start time of the last Object Library
Utility step that updated the Object Library Utility directory.

 2 Member Heading
The name of the object module member is immediately followed by the ID of the processor that
produced the object module. The processor ID is based on the presence of an END record in the
object module having the processor information in the appropriate format. If this information is not
present, the Processor ID field is not listed.

The Timestamp field is presented in yyyy/mm/dd format. The meaning of the timestamp is enclosed in
parentheses. That is, the Object Library Utility retains a timestamp for each member and selects the
time according to the following hierarchy:
(P)

Indicates that the timestamp is extracted from the object module from the date form of #pragma
comment or from the timestamp form of #pragma comment, whichever comes first.

(D)
Indicates that the timestamp is based on the time that the Object Library Utility DIR command
was last issued.

(F)
Indicates that the timestamp is the date of the object module file at the time the ADD or GEN
command was issued for the member. This is applicable to z/VM only.

76 XL C/C++ for z/VM: 1.3 User's Guide

(T)
Indicates that the timestamp is the time that the ADD command was issued for the member. This
is applicable to MVS only.

 3 User Comments
The user form of comments generated by #pragma comment is displayed. These comments are
extracted from the END record. It is possible to manually add such comments on multiple END
records and have them displayed in the listing. For more information on the END record, see the
z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147308/$file/cbclx01_v2r5.pdf).

 4 Symbol Information
Immediately following the Member Heading (and user comments, if any) is a list of the defined objects
contained within that member. Each symbol is prefixed by Type information enclosed in parentheses
and either External Name or Function Name. Function Name appears provided the object
module was compiled with the LONGNAME option and the symbol is the name of a defined external
function. In all other cases External Name is displayed. The Type field gives additional information
on each symbol. That is:
(L)

Indicates that the name is an L-name.
(S)

Indicates that the name is an S-name.
(W)

Indicates that this is a writable static object. If no W is present, this is not a writable static object.
(WL)

Indicates that this is an L-name and in writable static.

Chapter 11. Object Library Utility 77

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf

78 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 12. Filter Utility

This chapter describes how to use the CXXFILT utility to convert mangled names to demangled names.

When XL C/C++ compiles a C++ program, it has the ability to encode function names. It also has the
ability to encode other identifiers to include type and scoping information. This encoding process is called
mangling. Mangled names ensure type-safe linking.

Use the CXXFILT utility to convert these mangled names to demangled names. The utility copies the
characters from either a given file or from standard input, to standard output. It replaces all mangled
names with their corresponding demangled names.

The CXXFILT utility demangles any of the following classes of mangled names when the appropriate
options are specified.
regular names

Names that appear within the context of a function name or a member variable. For example, the
mangled name __ls__7ostreamFPCc is demangled as ostream::operator<<(const char*).

class names
Includes stand-alone class names that do not appear within the context of a function name or a
member variable. For example, the stand-alone class name Q2_1X1Y is demangled as X::Y.

special names
Special compiler-generated class objects. For example, the compiler-generated symbol name
__vft1X is demangled as X::virtual-fn-table-ptr.

The CXXFILT utility is run under VM/CMS by using the CXXFILT EXEC. The syntax of the CXXFILT
command is:

CXXFILT

filename

(

,

option

filename
is the name of the file that contain the mangled names to be demangled. If you specify no file name,
CXXFILT reads from stdin.

option
is the name of a CXXFILT option to be used. If you specify no options, NOSYMMAP, NOSIDEBYSIDE,
NOWIDTH, REGULARNAME, NOCLASSNAME, and NOSPECIALNAME are used by default.

CXXFILT Options

SYMMAP | NOSYMMAP
DEFAULT: NOSYMMAP

The SYMMAP option produces a symbol map on standard output. The map contains a list of the mangled
names and their corresponding demangled names. The map displays only the first 40 bytes of each
demangled name and truncates the rest. Mangled names are not truncated.

If an input mangled name does not have a demangled version, the symbol mapping does not display it.

The symbol mapping is displayed after the end of the input stream is encountered, and after CXXFILT
terminates.

© Copyright IBM Corp. 2003, 2022 79

SIDEBYSIDE | NOSIDEBYSIDE
DEFAULT: NOSIDEBYSIDE

The SIDEBYSIDE option displays each mangled name that is encountered in the input stream beside
its corresponding demangled name. If you do not specify this option, then only the demangled names
are printed. In either case, trailing characters in the input name that are not part of a mangled name
appear next to the demangled name. For example, if an extraneous xxxx is input with the mangled name
pr__3FOOF, then the SIDEBYSIDE option would produce this result:

 FOO::pr() pr__3FOOFvxxxx

WIDTH(width) | NOWIDTH
DEFAULT: NOWIDTH

The WIDTH option prints demangled names in fields, width characters wide. If the name is shorter than
width, it is padded on the right with blanks; if longer, it is truncated to width. The value of width must
be greater than 0. If width is greater than the record width, then the output is wrapped.

REGULARNAME | NOREGULARNAME
DEFAULT: REGULARNAME

The REGULARNAME option demangles regular names such as pr__3FOOFv. The mangled name that is
supplied to CXXFILT is treated as a regular name by default.

Specifying the NOREGULARNAME option will turn the default off. For example, specifying the CLASSNAME
option without the NOREGULARNAME option will cause CXXFILT to treat the mangled name as either a
regular name or standalone class name.

CLASSNAME | NOCLASSNAME
DEFAULT: NOCLASSNAME

The CLASSNAME option demangles standalone class names such as Q2_1X1Y.

To request that the mangled names be treated as standalone class names only, and never as a regular
name, use both CLASSNAME and NOREGULARNAME.

SPECIALNAME | NOSPECIALNAME
DEFAULT: NOSPECIALNAME

The SPECIALNAME option demangles special names, such as compiler-generated symbol names, for
example __vft1X.

To request that the mangled names be treated as special names only, and never as regular names, use
CXXFILT (SPECIALNAME NOREGULARNAME.

Unknown Type of Name
If you cannot specify the type of name, use CXXFILT (SPECIALNAME CLASSNAME. This causes
CXXFILT to attempt to demangle the name in the following order:

1. Regular name
2. Standalone class name
3. Special name

Running CXXFILT under VM/CMS
The CXXFILT EXEC accepts input by two methods: from stdin or from a file.

80 XL C/C++ for z/VM: 1.3 User's Guide

With the first method, enter names after invoking CXXFILT. You can specify one or more names on one or
more lines. The output is displayed after you press Enter. Names that are successfully demangled, as well
as those which are not demangled, are displayed in the same order as they were entered. To indicate end
of input, enter /*.

In the following example, CXXFILT treats mangled names as regular names, produces a symbol mapping,
and uses a field width 32 characters wide.

 user> CXXFILT (SYMMAP WIDTH(32)
 user> pr__3FOOFvxxxx
 reply< FOO::pr() xxxx
 user> __ls__7ostreamFPCc
 reply> ostream::operator<<(const char*)
 user> __vft1X
 reply> X::virtual-fn-table-ptr
 user> /*

 reply> C++ Symbol Mapping
 reply> demangled mangled
 reply> --------- -------
 reply>
 reply> FOO::pr() pr__3FOOFv
 reply> ostream::operator<<(const char*) __ls__7ostreamFPCc
 reply> X::virtual-fn-table-ptr __vft1X

Notes:

1. Because the trailing characters xxxx in the input name pr__3FOOFvxxxx are not part of a valid
mangled name, and the SIDEBYSIDE option is not on, the trailing characters are not demangled.

In the symbol mappings, the trailing characters xxxx are not displayed.
2. The symbol mapping is displayed only after /* requests CXXFILT termination.

The second method of giving input to CXXFILT is to supply it in a file. CXXFILT supports fixed and
variable file record formats. Each line of the file can have one or more names separated by space. In
the example below, mangled names are treated either as regular names or as special names (the special
names are compiler-generated symbol names). Demangled names are printed in fields 35 characters
wide, and output is in side-by-side format.

NAMES FILE contains the following two mangled names:

 pr__3FOOFv
 __vft1X

Entering the following command:

 CXXFILT NAMES FILE (SPECIALNAME WIDTH(35) SIDEBYSIDE

produces the following output:

 FOO::pr() pr__3FOOFv
 X::virtual-fn-table-ptr __vft1X

CXXFILT terminates when it reads the end-of-file.

Chapter 12. Filter Utility 81

82 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 13. DSECT Conversion Utility

This chapter describes how to use the DSECT conversion utility.

The DSECT conversion utility generates a C structure to map an assembler DSECT. This utility is used
when a C program calls or is called by an Assembler program and a C structure is required to map the area
passed.

The source for the assembler DSECT is assembled using the High-Level Assembler specifying the ADATA
option. (For a description of the ADATA option, see the High Level Assembler for z/OS & z/VM & z/VSE:
Programmer's Guide (https://www.ibm.com/docs/en/SSENW6_1.6.0/pdf/asmp1024_pdf.pdf).) The DSECT
utility then reads the SYSADATA file produced by the High Level Assembler and produces a file containing
the C structure according to the options specified.

The DSECT utility is run under VM/CMS by using the CDSECT EXEC. The syntax of the CDSECT command
is:

CDSECT sname

(

 option

ASM

 asmopts

sname
is the file name of the assembler source program containing the required section.

options
are any valid DSECT utility options.

ASM asmopts
specifies High Level Assembler options. The ADATA option is specified by default.

KNOWN: - The assembler source name is TESTASM ASSEMBLE A.
 - The required DSECT Utility options are EQU(BIT).

USE THE FOLLOWING COMMAND:
 CDSECT TESTASM (EQU(BIT)

Figure 34. Running the DSECT Utility under CMS

When the CDSECT command is executed, the High Level Assembler is executed with the required options.
The DSECT utility is then executed with the specified options. A report is produced in file sname DMAP
A1. The C structure produced is written to a file sname STRUCT A1 unless the OUTPUT option is
specified.

If the assembler source requires macros or copy members from a MACLIB, issue the GLOBAL MACLIB
command to set up the required MACLIBs before issuing the CDSECT command.

DSECT Utility Options
The options that you can use to control the generation of the C structure are as follows. You can specify
them in uppercase or lowercase, separating them by spaces or commas.

© Copyright IBM Corp. 2003, 2022 83

https://www.ibm.com/docs/en/SSENW6_1.6.0/pdf/asmp1024_pdf.pdf
https://www.ibm.com/docs/en/SSENW6_1.6.0/pdf/asmp1024_pdf.pdf

Table 8. DSECT Utility Options, Abbreviations, and IBM-Supplied Defaults

DSECT Utility Option Abbreviated Name IBM Supplied Default

SECT[(name,...)] None SECT(ALL)

BITF0XL|NOBITF0XL BITF|NOBITF NOBITF0XL

COMMENT[(delim,...)]|NOCOMMENT COM|NOCOM COMMENT

DEFSUB|NODEFSUB DEF|NODEF DEFSUB

EQUATE[(suboptions,...)]|NOEQUATE EQU|NOEQU NOEQUATE

HDRSKIP[(length)]|NOHDRSKIP HDR(length)|NOHDR NOHDRSKIP

LOCALE(name)|NOLOCALE LOC|NOLOC NOLOCALE

INDENT[(count)]|NOINDENT IN(count)|NOIN INDENT(2)

LOWERCASE|NOLOWERCASE LC|NOLC LOWERCASE

OPTFILE(filename)|NOOPTFILE OPTF|NOOPTF NOOPTFILE

PPCOND[(switch)]|NOPPCOND PP(switch)|NOPP NOPPCOND

SEQUENCE|NOSEQUENCE SEQ|NOSEQ NOSEQUENCE

UNNAMED|NOUNNAMED UNN|NOUNN NOUNNAMED

OUTPUT[(filename)] OUT[(filename)] OUTPUT(DD:EDCDSECT)

RECFM[(recfm)] None C Library defaults

LRECL[(lrecl)] None C Library defaults

BLKSIZE[(blksize)] None C Library defaults

SECT
DEFAULT: SECT(ALL)

The SECT option specifies the section names for which C structures are to be produced. The section
names can be either CSECT or DSECT names. They must exist in the SYSADATA file produced by the
Assembler. If you do not specify the SECT option or if you specify SECT(ALL), C structures are produced
for all CSECTs and DSECTs defined in the SYSADATA file, except for private code and unnamed DSECTs.

If the High Level Assembler is run with the BATCH option, only the section names defined within the first
program can be specified on the SECT option. If you specify SECT(ALL) (or select it by default), only the
sections from the first program are selected.

BITF0XL | NOBITF0XL
DEFAULT: NOBITF0XL

Specify the BITF0XL option when the bit fields are mapped into a flag byte as in the following example:

 FLAGFLD DS F
 ORG FLAGFLD+0
 B1FLG1 DC 0XL(B'10000000')'00' Definition for bit 0 of 1st byte
 B1FLG2 DC 0XL(B'01000000')'00' Definition for bit 1 of 1st byte
 B1FLG3 DC 0XL(B'00100000')'00' Definition for bit 2 of 1st byte
 B1FLG4 DC 0XL(B'00010000')'00' Definition for bit 3 of 1st byte
 B1FLG5 DC 0XL(B'00001000')'00' Definition for bit 4 of 1st byte
 B1FLG6 DC 0XL(B'00000100')'00' Definition for bit 5 of 1st byte
 B1FLG7 DC 0XL(B'00000010')'00' Definition for bit 6 of 1st byte
 B1FLG8 DC 0XL(B'00000001')'00' Definition for bit 7 of 1st byte
 ORG FLAGFLD+1
 B2FLG1 DC 0XL(B'10000000')'00' Definition for bit 0 of 2nd byte
 B2FLG2 DC 0XL(B'01000000')'00' Definition for bit 1 of 2nd byte

84 XL C/C++ for z/VM: 1.3 User's Guide

 B2FLG3 DC 0XL(B'00100000')'00' Definition for bit 2 of 2nd byte
 B2FLG4 DC 0XL(B'00010000')'00' Definition for bit 3 of 2nd byte

When the bit fields are mapped as shown in the above example, the bit fields can be tested using the
following code:

 TM FLAGFLD,L'B1FLG Test bit 0 of byte 1
 Bx label Branch if set/not set

When you specify the BITF0XL option, the length attribute of the following fields is used to provide the
mapping for the bits within the flag bytes.

The length attribute of the following fields is used to map the bit fields if a field conforms to the following
rules:

• Does not have a duplication factor of zero.
• Has a length between 1 and 4 bytes and does not have a bit length.
• Does not have more than 1 nominal value.

and the following fields conform to the following rules:

• Has a Type attribute of B, C, or X.
• Has the same offset as the field (or consecutive fields have overlapping offsets).
• Has a duplication factor of zero.
• Does not have more than 1 nominal value.
• Has a length attribute between 1 and 255 and does not have a bit length.
• The length attribute maps one bit or consecutive bits, for example, B'10000000' or B'11000000', but

not B'10100000'.

The fields must be on consecutive lines and must overlap a named field. If the fields above are used to
define the bits for a field, any EQU statements following the field are not used to define the bit fields.

The following fields are used to define the bit fields as long as they map consecutive bits. If two
consecutive fields are equivalent, the second field is skipped.

COMMENT | NOCOMMENT
DEFAULT: COMMENT

The COMMENT option specifies whether the comments on the line where the field is defined will be placed
in the C structure produced.

If you specify the COMMENT option without a delimiter, the entire comment is placed in the C structure.

If you specify a delimiter, any comments following the delimiter are skipped and are not placed in the
C structure. You can remove changes that are flagged with a particular delimiter. The delimiter cannot
contain imbedded spaces or commas. The case of the delimiter and comment text is not significant. You
can specify up to 10 delimiters, and they can contain up to 10 characters each.

DEFSUB | NODEFSUB
DEFAULT: DEFSUB

The DEFSUB option specifies whether #define directives will be built for fields that are part of a union or
substructure.

If the DEFSUB option is in effect, fields within a substructure or union have the field names prefixed by
an underscore. A #define directive is written at the end of the structure to allow the field name to be
specified directly as in the following example:

 _Packed struct dsect_name {
 int field1;
 _Packed struct {

Chapter 13. DSECT Conversion Utility 85

 int _subfld1;
 short int _subfld2;
 unsigned char _subfld3[4];
 } field2;
 }
 #define subfld1 field2._subfld1
 #define subfld2 field2._subfld2
 #define subfld3 field2._subfld3

If the DEFSUB option is in effect, the fields prefixed by an underscore may match the name of another
field within the structure. No warning is issued.

EQUATE | NOEQUATE
DEFAULT: NOEQUATE

The EQUATE option specifies whether the EQU statements following a field are to be used to define bit
fields, to generate #define directives, or are to be ignored.

The suboptions specify how the EQU statement is used. You can specify one or more of the suboptions,
separating them by spaces or commas. If you specify more than one suboption, the EQU statements
following a field are checked to see if they are valid for the first suboption. If so, they are formatted
according to that option. Otherwise, the subsequent suboptions are checked to see if they are applicable.

If you specify the EQUATE option without suboptions, EQUATE(BIT) is used. If you specify NOEQUATE (or
select it by default), the EQU statements following a field are ignored.

You can specify the following suboptions for the EQUATE option:
BIT

Indicates that the value for an EQU statement is used to define the bits for a field where the field
conforms to the following rules:

• Does not have a duplication factor of zero.
• Has a length between 1 and 4 bytes and has a bit length that is a multiple of 8.
• Does not have more than 1 nominal value.

and the EQU statements following the field conform to the following rules:

• The value for the EQU statements following the field mask consecutive bits (for example, X'80'
followed by X'40').

• The value for an EQU statement masks one bit or consecutive bits, for example, B'10000000' or
B'11000000', but not B'10100000'.

• Where the length of the field is greater than 1 byte, the bits for the remaining bytes can be defined
by providing the EQU statements for the second byte after the EQU statement for the first byte.

• The value for the EQU statement is not a relocatable value.

When you specify EQUATE(BIT), the EQU statements are converted as in the following example:

 FLAGFLD DS H
 FLAG21 EQU X'80'
 FLAG22 EQU X'40'
 FLAG23 EQU X'20'
 FLAG24 EQU X'10'
 FLAG25 EQU X'08'
 FLAG26 EQU X'04'
 FLAG27 EQU X'02'
 FLAG28 EQU X'01'
 FLAG2A EQU X'80'
 FLAG2B EQU X'40'
 _Packed struct dsect_name {
 unsigned int flag21 : 1,
 flag22 : 1,
 flag23 : 1,
 flag24 : 1,
 flag25 : 1,
 flag26 : 1,
 flag27 : 1,
 flag28 : 1,

86 XL C/C++ for z/VM: 1.3 User's Guide

 flag2a : 1,
 flag2b : 1,
 : 6;
 }

BITL
Indicates that the length attribute for an EQU statement is used to define the bits for a field where the
field conforms to the following rules:

• Does not have a duplication factor of zero.
• Has a length between 1 and 4 bytes and has a bit length that is a multiple of 8.
• Does not have more than 1 nominal value.

and the EQU statements following the field conform to the following rules:

• The value specified for the EQU statement has the same or overlapping offset as the field.
• The length attribute for the EQU statement is between 1 and 255.
• The length attribute for the EQU statement masks one bit or consecutive bits, for example,

B'10000000' or B'11000000', but not B'10100000'.
• The value for the EQU statement is a relocatable value.

When you specify EQUATE(BITL), the EQU statements are converted as in the following example:

 BYTEFLD DS F
 B1FLG1 EQU BYTEFLD+0,B'10000000'
 B1FLG2 EQU BYTEFLD+0,B'01000000'
 B1FLG3 EQU BYTEFLD+0,B'00100000'
 B1FLG4 EQU BYTEFLD+0,B'00010000'
 B1FLG5 EQU BYTEFLD+0,B'00001000'
 B1FLG6 EQU BYTEFLD+0,B'00000100'
 B1FLG7 EQU BYTEFLD+0,B'00000010'
 B1FLG8 EQU BYTEFLD+0,B'00000001'
 B2FLG1 EQU BYTEFLD+1,B'10000000'
 B2FLG2 EQU BYTEFLD+1,B'01000000'
 B2FLG3 EQU BYTEFLD+1,B'00100000'
 B2FLG4 EQU BYTEFLD+1,B'00010000'
 _Packed struct dsect_name {
 unsigned int b1flg1 : 1,
 b1flg2 : 1,
 b1flg3 : 1,
 b1flg4 : 1,
 b1flg5 : 1,
 b1flg6 : 1,
 b1flg7 : 1,
 b1flg8 : 1,
 b2flg1 : 1,
 b2flg2 : 1,
 b2flg3 : 1,
 b2flg4 : 1,
 : 20;
 }

DEF
Indicates that the EQU statements following a field are used to build #define directives to define the
possible values for a field. The #define directives are placed after the end of the C structure. The
EQU statements should not specify a relocatable value.

When you specify EQUATE(DEF), the EQU statements are converted as in the following example:

 FLAGBYTE DS X
 FLAG1 EQU X'80'
 FLAG2 EQU X'20'
 FLAG3 EQU X'10'
 FLAG4 EQU X'08'
 FLAG5 EQU X'06'
 FLAG6 EQU X'01'
 _Packed struct dsect_name {
 unsigned char flagbyte;
 }
 /* Values for flagbyte field */
 #define flag1 0x80
 #define flag2 0x20

Chapter 13. DSECT Conversion Utility 87

 #define flag3 0x10
 #define flag4 0x08
 #define flag5 0x06
 #define flag6 0x01

HDRSKIP | NOHDRSKIP
DEFAULT: NOHDRSKIP

The HDRSKIP option specifies that the fields within the specified number of bytes from the start of the
section are to be skipped. Use this option where a section has a header that is not required in the C
structure produced.

The value specified on the HDRSKIP option indicates the number of bytes at the start of the section that
are to be skipped. HDRSKIP(0) is equivalent to NOHDRSKIP.

In the following example, if you specify HDRSKIP(8), the first two fields are skipped and only the
remaining two fields are built into the structure.

 SECTNAME DSECT
 PREFIX1 DS CL4
 PREFIX2 DS CL4
 FIELD1 DS CL4
 FIELD2 DS CL4
 _Packed struct sectname {
 unsigned char field1[4];
 unsigned char field2[4];
 }

If the value specified for the HDRSKIP option is greater than the length of the section, the C structure is
not be produced for that section.

INDENT | NOINDENT
DEFAULT: INDENT(2)

The INDENT option specifies the number of character positions that the fields, unions, and substructures
are indented. Turn off indentation by specifying INDENT(0) or NOINDENT. The maximum value that you
can specify for the INDENT option is 32767.

LOCALE | NOLOCALE
The LOCALE(name) option specifies the name of a locale to be passed to the setlocale() function.
Specifying LOCALE without the name parameter is equivalent to passing the NULL string to the setlocale()
function.

The structure produced contains the left and right brace, and left and right square bracket, backslash,
and number sign which have different code point values for the different code pages. When the LOCALE
option is specified, and these characters are written to the output file, the code point from the LC_SYNTAX
category for the specified locale is used.

The default is NOLOCALE.

You can abbreviate the option to LOC(name) or NOLOC.

LOWERCASE | NOLOWERCASE
DEFAULT: LOWERCASE

The LOWERCASE option specifies whether the field names within the C structure are to be converted to
lowercase or left as entered. If you specify LOWERCASE, all the field names are converted to lowercase.
If you specify NOLOWERCASE, the field names are built into the structure in the case in which they were
entered in the assembler section.

88 XL C/C++ for z/VM: 1.3 User's Guide

OPTFILE | NOOPTFILE
The OPTFILE(filename) option specifies the file name containing the records that specify the options
to be used for processing the sections. The records must be as follows:

• The lines must begin with the SECT option, with only one section name specified. The options following
determine how the structure is produced for the specified section. The section name must only be
specified once.

• The lines may contain the options BITF0XL, COMMENT, DEFSUB, EQUATE, HDRSKIP, INDENT,
LOWERCASE, PPCOND, and UNNAMED, separated by spaces or commas. These override the options
specified on the command line for the section.

The OPTFILE option is ignored if the SECT option is also specified on the command line.

The default is NOOPTFILE.

You can abbreviate the option to OPTF(filename) or NOOPTF.

PPCOND | NOPPCOND
DEFAULT: NOPPCOND

The PPCOND option specifies whether preprocessor directives will be built around the structure definition
to prevent duplicate definitions.

If you specify PPCOND, the following are built around the structure definition.

 #ifndef switch
 #define switch
 .
 .
 .
 structure definition for section
 .
 .
 .
 #endif

where switch is the switch specified on the PPCOND option or the section name prefixed and suffixed by
two underscores, for example, __name__.

If you specify a switch, the #ifndef and #endif directives are placed around all structures that are
produced. If you do not specify a switch, the #ifndef and #endif directives are placed around each
structure produced.

SEQUENCE | NOSEQUENCE
DEFAULT: NOSEQUENCE

The SEQUENCE option specifies whether sequence numbers will be placed in columns 73 to 80 of the
output record. If you specify the SEQUENCE option, the C structure is built into columns 1 to 72 of the
output record and sequence numbers are placed in columns 73 to 80. If you specify NOSEQUENCE (or
select it by default), sequence numbers are not generated and the C structure is built within all available
columns in the output record.

If the record length for the output file is less than 80 characters, the SEQUENCE option is ignored.

UNNAMED | NOUNNAMED
DEFAULT: NOUNNAMED

The UNNAMED option specifies that names are not generated for the unions and substructures within the
main structure.

Chapter 13. DSECT Conversion Utility 89

OUTPUT
DEFAULT: OUTPUT(DD:EDCDSECT)

The C structures produced are, by default, written to the EDCDSECT DD statement. You can use the
OUTPUT option to specify an alternative DD statement or data-set name to write the C structure. You can
specify any valid file name up to 60 characters in length. The file name specified will be passed to fopen()
as entered.

RECFM
DEFAULT: C Library default

The RECFM option specifies the record format for the file to be produced. You can specify up to 10
characters. If it is not specified, the C library defaults are used.

LRECL
DEFAULT: C Library default

The LRECL option specifies the logical record length for the file to be produced. The logical record length
specified must not be greater than 32767. If it is not specified, the C library defaults will be used.

BLKSIZE
DEFAULT: C Library default

The BLKSIZE option specifies the block size for the file to be produced. The block size specified must not
be greater than 32767. If it is not specified, the C library defaults will be used.

Generation of C Structures
The C structure is produced as follows according to the options in effect:

• The section name is used as the structure name. The structure is generated with the _Packed attribute
to ensure it matches the assembler section.

Whenever you specify the structure name, you should also specify the _Packed attribute.
• Any nonalphanumeric characters in the section or field names are converted to underscores. Duplicate

names may be generated when the field names are identical except for the national character. No
warning is issued.

• Where fields overlap, a substructure or union is built within the main structure. A substructure is
produced where possible. When substructures and unions are built, the structure and unions names are
generated by the DSECT utility.

• The substructures and unions within the main structure are indented according to the INDENT option
unless the record length is too small to permit any further indentation.

• Fillers are added within the structure when required. A filler name is generated by the DSECT utility.
• Where there is no direct equivalent for an assembler definition within the C language, the field is defined

as a character field.
• If a field has a duplication factor of zero, but cannot be used as a structure name, the field is defined as

though the duplication factor of zero was eliminated.
• Where a line within the assembler input consists of an operand with a duplication factor of zero (for

alignment), followed by the field definition, the first operand is skipped. For example:

 FIELDA DS OF,CLB

is treated as though the following was specified:

 FIELDA DS CLB

90 XL C/C++ for z/VM: 1.3 User's Guide

• When the COMMENT option is in effect, the comment on the line following the definition of the field is
placed in the C structure. The comment is placed on the same line as the field definition where possible,
or on the following line.

/* is removed from the beginning of comments and */ is removed from the end of comments. Any
remaining instances of */ in the comment are converted to **.

Each field within the section is converted to a field within the C structure as shown in the following
examples:

• Bit length fields

If the field has a bit length that is not a multiple of 8, it is converted as follows. Otherwise, it is converted
according to the field type.
DS CL.n

unsigned int name : n; where n is from 1 to 31.
DS CL.n

unsigned char name[x]; where n is greater than 32. x will be the number of bytes required
(that is, the bit length / 8 + 1).

DS 5CL.n
unsigned char name[x]; where x will be the number of bytes required (that is, the duplication factor
* bit length / 8 + 1).

• Characters
DS C

unsigned char name;
DS CL2

unsigned char name[2];
DS 4CL2

unsigned char name[4][2];
• Graphic Characters

DS G
wchar_t name;

DS GL1
unsigned char name;

DS GL2
wchar_t name;

DS GL3
unsigned char name[3];

DS 4GL1
unsigned char name[4];

DS 4GL2
wchar_t name[4];

DS 4GL3
unsigned char name[4][3];

• Hexadecimal Characters
DS X

unsigned char name;
DS XL2

unsigned char name[2];
DS 4XL2

unsigned char name[4][2];
• Binary fields

Chapter 13. DSECT Conversion Utility 91

DS B
unsigned char name;

DS BL2
unsigned char name[2];

DS 4BL2
unsigned char name[4][2];

• Half and Fullword Fixed-point
DS F

int name;
DS H

short int name;
DS FL1 or HL1

char name;
DS FL2 or HL2

short int name;
DS FL3 or HL3

int name : 24;
DS FLn or HLn

unsigned char name[n]; where n is greater than 4.
DS 4F

int name[4];
DS 4H

short int name[4];
DS 4FL1 or 4HL1

char name[4];
DS 4FL2 or 4HL2

short int name[4];
DS 4FL3 or 4HL3

unsigned char name[4][3];
DS 4FLn or 4HLn

unsigned char name[4][n]; where n is greater than 4.
• Floating Point

DS E
float name;

DS D
double name;

DS L
long double name;

DS 4E
float name[4];

DS 4D
double name[4];

DS 4L
long double name[4];

DS EL4 or DL4 or LL4
float name;

DS EL8 or DL8 or LL8
double name;

92 XL C/C++ for z/VM: 1.3 User's Guide

DS LL16
long double name;

DS E, D or L
unsigned char name[n]; where n is other than 4, 8 or 16.

• Packed Decimal
DS P

unsigned char name;
DS PL2

unsigned char name[2];
DS 4PL2

unsigned char name[4][2];
• Zoned Decimal

DS Z
unsigned char name;

DS ZL2
unsigned char name[2];

DS 4ZL2
unsigned char name[4][2];

• Address
DS A

void *name;
DS AL1

unsigned char name;
DS AL2

unsigned short name;
DS AL3

unsigned int name : 24;
DS 4A

void *name[4];
DS 4AL1

unsigned char name[4];
DS 4AL2

unsigned short name[4];
DS 4AL3

unsigned char name[4][3];
• Y-type Address

DS Y
unsigned short name;

DS YL1
unsigned char name;

DS 4Y
unsigned short name[4];

DS 4YL1
unsigned char name[4];

• S-type Address (Base and displacement)
DS S

unsigned short name;

Chapter 13. DSECT Conversion Utility 93

DS SL1
unsigned char name;

DS 4S
unsigned short name[4];

DS 4SL1
unsigned char name[4];

• External Symbol Address
DS V

void *name;
DS VL3

unsigned int name : 24;
DS 4V

void *name[4];
DS 4VL3

unsigned char name[4][3];
• External Dummy Section Offset

DS Q
unsigned int name;

DS QL1
unsigned char name;

DS QL2
unsigned short name;

DS QL3
unsigned int name : 24;

DS 4Q
unsigned int name[4];

DS 4QL1
unsigned char name[4];

DS 4QL2
unsigned short name[4];

DS 4QL3
unsigned char name[4][3];

• Channel Command Words

When a CCW, CCW0, or CCW1 assembler instruction is present within the section, a typedef ccw0_t or
ccw1_t is defined to map the format of the CCW.

The CCW, CCW0 or CCW1 is built into the C structure as follows:
CCW cc,addr,flags,count

ccw0_t name;
CCW0 cc,addr,flags,count

ccw0_t name;
CCW1 cc,addr,flags,count

ccw1_t name;

94 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 14. Code Set and Locale Utilities

This chapter describes the code set conversion utilities that help you convert a file from one code set to
another and the localedef utility that allows you to define the language and cultural conventions used
in your environment.

Code Set Conversion Utilities
The code set conversion facilities that you may find useful prior to compiling are:
iconv

Converts a file from one code set encoding to another. It can be used to convert C source code before
compilation or to convert input files.

genxlt
Generates a translate table for use by the iconv utility and iconv functions to perform code set
conversion. It can be used to build code set conversions for existing code pages that are not supplied
with C, or to build code set conversions for existing code pages. The iconv_open(), iconv(), and
iconv_close() functions are called from the iconv utility to perform code set translation. These
functions can be called from any program requiring code set translation. For more information on
these functions, see the XL C/C++ for z/VM: Runtime Library Reference.

iconv Utility
The iconv utility converts the characters from the input file from one coded character set (code set)
definition to another code set definition, and writes the characters to the output file.

The iconv utility uses the iconv_open(), iconv(), and iconv_close() functions to convert the
input file records from the coded character set definition for the input code page to the coded character
set definition for the output code page. There is one record in the output file for each record in the input
file. No padding or truncation of records is performed.

When conversions are performed between single-byte code pages, the output records are the same
length as the input records. When conversions are performed between double-byte code pages, the
output records may be longer or shorter than the input records because the shift-out and shift-in
characters may be added or removed.

The ICONV EXEC is provided to invoke the iconv utility to copy the input file to the output file and convert
the characters from the input code page to the output code page.

The syntax of the ICONV command is:

ICONV inname intype inmode outname outtype outmode (

FROMCODE fromcode

TOCODE tocode)

inname
is the file name of the input file.

intype
is the file type of the input file.

inmode
is the file mode of the input file.

© Copyright IBM Corp. 2003, 2022 95

outname
is the file name of the output file. If = is specified, the output file is the same as the input file.

outtype
is the file type of the output file. If = is specified, the output file type is the same as the input file type.

outmode
is the file mode of the output file. If = is specified, the output file mode is the same as the input file
mode.

fromcode
is the name of the codeset in which the input data is encoded.

tocode
is the name of the codeset to which the output data is to be converted.

In the following example, the input file is INPUT FILE A in code page IBM-037 and the output file is
OUTPUT FILE A in code page IBM-1047.

 ICONV INPUT FILE A OUTPUT FILE A (FROMCODE IBM-037 TOCODE IBM-1047

Note: If the FROMCODE or TOCODE is specified more than once, the last value specified is
used. The output file is created with a record format of V. For more information, see the
z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

genxlt Utility
The genxlt utility creates translation tables, which are used by the iconv_open(), iconv(), and
iconv_close() services of the runtime library. These services can be called from both non-XPLINK
and XPLINK applications. The non-XPLINK and XPLINK versions have different names. The non-XPLINK
version of the GENXLT table should always be generated. If any XPLINK applications will require one of
these translation tables, then the XPLINK version should also be generated.

The genxlt utility reads character conversion information from the input file and writes the compiled
conversion table to the LOADLIB. The input file contains directives that are acted upon by the genxlt
utility to produce the compiled version of the conversion table. The source input to the genxlt utility is
assumed to be implicitly specified in code page IBM-1047.

The GENXLT EXEC invokes the genxlt utility to read the character conversion information and produces
the conversion table. It may be invoked under VM/CMS or VM batch. The genxlt utility options can be
specified on the command line. If the same option is specified more than once, the last option specified is
used.

The syntax of the GENXLT command is:

GENXLT filename

filetype

filemode

(LIB libname

NODBCS

DBCS)

filename
is the file name of the file containing the character conversion information.

filetype
is the file type of the file containing the character conversion information. If it is not specified, it
defaults to GENXLT.

96 XL C/C++ for z/VM: 1.3 User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

filemode
is the file mode of the file containing the character conversion information. If it is not specified, the
accessed disks are searched for the first file that matches the file name and file type.

LIB libname
specifies the name of the LOADLIB. The member name in the LOADLIB will be the same as filename.

NODBCS
DBCS

specifies whether the DBCS characters within shift-out and shift-in characters will be converted. The
DBCS option should be specified only when an EBCDIC code page is being converted to a different
EBCDIC code page.

If the DBCS option is specified, when a shift-out character is encountered in the input, the characters
up to the shift-in character are copied to the output, and not converted. There must be an even
number of characters between the shift-out and shift-in characters, and the characters must be valid
DBCS characters.

If the NODBCS option is specified (or by default), all the characters are converted, and no checking of
DBCS characters is performed.

For more information, see the z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

The conversion table is built as a member of the loadlib specified. The member name is the same as the
filename specified.

In the following example, the input file is EDCUEAEY GENXLT A, the library is MYLIB with the DBCS
option, and the conversion is from IBM-037 to IBM-1047.

 GENXLT EDCUEAEY GENXLT A (LIB MYLIB DBCS

To make the conversion table available for the iconv utility and iconv_open() function, issue the
GLOBAL LOADLIB command, as follows:

 GLOBAL LOADLIB MYLIB SCEERUN

localedef Utility
The localedef utility creates locale objects, which are used by the setlocale() service of the runtime
library. This service can be called from both non-XPLINK and XPLINK applications. The non-XPLINK and
XPLINK locale object versions have different names. The non-XPLINK version of the locale object should
always be generated. If any XPLINK applications will use the locale then the XPLINK version should also
be generated.

A locale is a collection of data that defines language and cultural conventions. Locales consist of various
categories, that are identified by name, that characterize specific aspects of your cultural environment.

The localedef utility generates locales according to the rules that are defined in the locale definition
file. A user can create his own customized locale definition file.

The localedef utility reads the locale definition file and produces a locale object that can be used by the
locale specific library functions.

The LOCALDEF EXEC invokes the localedef utility under VM/CMS and VM batch. It does the following:

1. Invokes the CCNELDEF module to read the locale definition file and produce the C code to build the
locale

2. Invokes the XL C/C++ compiler to compile the C source generated
3. Invokes the VM/CMS BIND command to build a loadlib member

The options for the localedef utility are specified on the command line. They can be separated by
spaces or commas. If the same option is specified more than once, the last option specified is used.

Chapter 14. Code Set and Locale Utilities 97

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

The syntax of the LOCALDEF command is:

LOCALDEF filename

filetype

filemode

(

CHARMAP( name)

FLAG(W)

FLAG(E)

NOBLDERR

BLDERR

XPLINK

LIB libname MBR

mbrname

filename
is the file name of the file containing the locale definition information.

filetype
is the file type of the file containing the locale definition information. If it is not specified, it defaults to
LOCALE.

filemode
is the file mode of the file containing the locale definition information. If it is not specified, the
accessed disks are searched for the first file that matches the file name and file type.

CHARMAP(name)
specifies the member name of the file containing the mapping of the character symbols to actual
character encodings. If this option is not specified, the localedef utility defaults the Charmap to
IBM-1047.

The name specified is the file name of the charmap file. The file type is CHARMAP.

FLAG(W)
FLAG(E)

specifies whether warning messages are issued. If FLAG(W) is specified (or by default), warning and
error messages are issued. If FLAG(E) is specified, only the error messages are issued.

NOBLDERR
BLDERR

specifies whether the locale is generated if errors are detected. If the BLDERR option is specified, the
locale is generated even if errors are detected. If the NOBLDERR option is specified (or by default), the
locale is not generated if an error is detected.

XPLINK
specifies that the locale to be built is an XPLINK locale.

libname
is the libname parameter of the LIB option that specifies the name of the LOADLIB.

mbrname
is the mbrname parameter of the MBR option that specifies the member name for the member in the
LOADLIB. The member name defaults to the file name of the input file.

The LOADLIB member is created using the BIND command. The member name within the LOADLIB is the
member name (if specified) or the file name of the input file. The non-XPLINK version of the locale object
should have EDC$ or EDC@ as the first four characters of the member name. The XPLINK version should
have CEH$ or CEH@ as the first four characters of the member name.

For more information on locale and code set codes, see the z/OS: XL C/C++ Programming Guide (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

98 XL C/C++ for z/VM: 1.3 User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

In the following example, the locale source is EDC$EUEY LOCALE A, the library name is MYLIB, options
are CHARMAP(IBM-297), and the output member name is EDC$EUEM, for EN_US.IBM-297.

 LOCALDEF EDC$EUEY LOCALE A (LIB MYLIB CHARMAP(IBM-297) MBR EDC$EUEM

Chapter 14. Code Set and Locale Utilities 99

100 XL C/C++ for z/VM: 1.3 User's Guide

Chapter 15. OpenExtensions ar and make Utlities

OpenExtensions provides two utilities that you can use to make the task of creating and managing
OpenExtensions C/C++ application programs easier: ar and make. Use these utilities with the c89/cxx
utility to build an application program into an easily updated and maintained executable file.

Note: All references to c89 in the following sections also apply to cxx unless otherwise specified.

OpenExtensions Archive Libraries
The ar utility allows you to create and maintain a library of OpenExtensions C/C++ application object
files. You can specify the c89 command string so that archive libraries are processed during binding.

The archive library file, when created for application program object files, has a special symbol table for
members that are object files. The symbol table is read to determine which object files should be bound
into the application program executable file. A c89-specified archive library is processed during binding.
Any object files in the specified archive library will be bound if they can be used to resolve external
symbols. Use of this autocall library mechanism by the c89 utility is analogous to the use of the C370LIB
Object Library utility for z/VM application program objects. For more information, see Chapter 11, “Object
Library Utility,” on page 73.

The c89 utility requires that archive libraries obey the following naming convention in the byte file system
(BFS):

filename.a

This assumes that no directory file searching for the archive file takes place when specified on the c89
command line. For example, to compile the application program source file dirsum.c from the src
subdirectory of your working directory and resolve externals symbols from the symb.a archive library in
your working directory, you would enter:

 c89 -o ./exfils/dirsum ./src/dirsum.c ./symb.a

To use c89 to search for specified archive files in one or more BFS directories, use the naming convention:

liblibname.a

On the c89 command line, specify BFS directories to be searched with the -L directory option and an
archive library with the -l libname operand. For example, to compile the application program source
file entinfo.c from the src subdirectory of your working directory and bind it with the object file
newsroute.o and the archive file /mylib/libbrwobjs.a, enter:

 c89 -o ./entinfo -L /mylib ./src/entinfo.c newsroute.o -l brwobjs

The BFS subdirectory mylib of your working directory is searched first for the archive library
libbrwobjs.a. If it is not found there, c89 searches for the archive library in the usual places.

Creating Archive Libraries
To create the archive library, use the ar -r option. For example, to create an archive library named
bin/libbrobompgm.a from your working directory and add the member jkeyadd.o to it, specify:

 ar -rc ./bin/libbrobompgm.a jkeyadd.o

The libbrobompgm.a archive library file is created in the bin subdirectory of your BFS working
directory. Use of the -c option tells ar to suppress the message normally sent when an archive library file
is created.

© Copyright IBM Corp. 2003, 2022 101

To display the object files archived in the bin/libbrobompgm.a library from your working directory,
specify:

 ar -t ./bin/libbrobompgm.a

For more information about the ar utility, see the z/VM: OpenExtensions Commands Reference.

Creating Makefiles
The make utility maintains all the parts of and dependencies for your application program. It uses a
makefile, which you create, to keep your application parts (listed in it) up to date with one another. If one
part changes, make updates all the other files that depend on the changed part.

A makefile is a normal BFS text file. Create the file and edit it using any text editor to describe the
application program files, their locations, dependencies on other files, and rules for building the files into
an application executable file. When creating a makefile, remember that tabbing of information in the file
is important and not all editors support tab characters the same way.

The make utility invokes the c89 interface to the XL C/C++ compiler and the binder to recompile and bind
an updated application program.

For a detailed discussion of the make utility and how best take advantage of its function, see the z/VM:
OpenExtensions Commands Reference and z/VM: OpenExtensions Advanced Application Programming
Tools.

102 XL C/C++ for z/VM: 1.3 User's Guide

Appendix A. IBM-Supplied EXECs

This appendix lists the EXECs provided by the XL C/C++ compiler, in conjunction with Language
Environment, to call the various utilities. For more information on the EXECs provided by Language
Environment, see the z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

EXEC Name Task Description

CC Compile

CMOD Generate an executable module

CXXFILT Demangle names

GENXLT Generate a translate table for use by the ICONV utility and functions

ICONV Convert a file from one code set encoding to another

LOCALDEF Produce a locale object that can be used by the locale specific library functions

LINKLOAD Generate a fetchable module

C370LIB Maintain an object library TXTLIB

CDSECT Run the DSECT Conversion Utility

© Copyright IBM Corp. 2003, 2022 103

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

104 XL C/C++ for z/VM: 1.3 User's Guide

Appendix B. XL C/C++ Compiler Return Codes and
Messages

For complete descriptions of XL C/C++ return codes and messages, see z/OS: XL C/C++ Messages (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc147305/$file/cbcdg01_v2r5.pdf).

© Copyright IBM Corp. 2003, 2022 105

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc147305/$file/cbcdg01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc147305/$file/cbcdg01_v2r5.pdf

106 XL C/C++ for z/VM: 1.3 User's Guide

Appendix C. EXEC Error Messages

The messages in this section can be returned from the following XL C/C++ EXECs:

• CC
• CDSECT
• LOCALDEF

The message format is:

CCNUTLnnns text [&n]

nnn
is the message number.

s
is the message type (severity):
I

Informational
W

Warning
E

Error
text

is the message that appears on the screen.
&n

is a substitution variable, which contains a specific name in the issued message.

CCNUTL001I &1 exec completed with return
code &2.

Explanation
The utility completed processing with the return code
specified.

User response
No response required.

CCNUTL002E Help is not available.

Explanation
The help file for the requested command is not
accessible or does not exist.

User response
Find out from your systems programmer which disk
has the help file on it and get access to the disk. If
the help file has not been installed, have your systems
programmer install it.

CCNUTL003W LE Run-Time library SCEERUN is
not in GLOBAL LOADLIB.

Explanation
The runtime library is missing.

User response
Run the z/VM command GLOBAL LOADLIB SCEERUN
to add the runtime library.

CCNUTL004W Invalid parameter list.

Explanation
The parameter list is not valid.

User response
Check the syntax of the command you are running and
correct it.

CCNUTL005E A-Disk is not accessed.

Explanation
Your A-disk is not accessed in read/write mode.

© Copyright IBM Corp. 2003, 2022 107

User response
Link to and access your A-disk in read/write mode.

CCNUTL006E A-Disk is not writable.

Explanation
Your A-disk is not accessed in read/write mode.

User response
Link to and access your A-disk in read/write mode.

CCNUTL008E A library name must be specified
in suboption LIB.

Explanation
You must specify a library name when using
LOCALDEF command.

User response
Check the syntax of the LOCALDEF command and
correct it.

CCNUTL009E Cannot execute program module
&1.

Explanation
A module cannot be run.

User response
Check with your system programmer.

108 XL C/C++ for z/VM: 1.3 User's Guide

Appendix D. Runtime Error Messages and Return
Codes

This appendix contains information about the runtime messages and should not be used as programming
interface information.

These are messages you see while your XL C/C++ program is running. Messages may be displayed in
uppercase or in mixed case English format, or in Kanji.

perror Messages
These messages are only printed when a call to perror or strerror is made and the errno value does
not prefix the message.

Note: For information about these messages, see z/OS: Language Environment Runtime Messages (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf).

XL C/C++ Runtime Return Codes
The runtime return code value is set in one of the following ways:

• By the initialization and termination routines or the program management routines of Language
Environment.

• By the return statement in your XL C/C++ program
• By calling the exit or abort functions from your XL C/C++ program.

It is possible to pass a return code from an XL C/C++ program to the program that invoked it. For example,
if the XL C/C++ program is invoked by a REXX exec, it can examine the return code to determine if
processing should continue.

The return code generated by an XL C/C++ program consists of two elements. One element is specified if
the program calls the exit function or if the program specifies a return value when returning from main.
The other element is specified by the program management routines of the Language Environment library
and indicates the way in which your program terminated. Unless an error is detected that prevents the
program management routines from operating correctly, the two elements are added together to form a
total in which the thousands digit indicates the way in which your program terminated and the hundreds,
tens, and units are set by your program.

Valid return codes are -231 to 231-1, inclusive.

Note: The CMS Ready(nnnnn) prompt displays only the last 5 digits of the return code. For example,
2,000,000 is displayed as Ready(00000). You can write a REXX exec to retrieve the full return code.

For a list of error messages, see z/OS: Language Environment Runtime Messages (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf).

© Copyright IBM Corp. 2003, 2022 109

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf

110 XL C/C++ for z/VM: 1.3 User's Guide

Appendix E. Utility Messages

This appendix contains information about the DSECT utility messages.

See for messages and return codes for:

• Object Library Utility
• Runtime messages and return codes
• localedef Utility
• genxlt Utility
• iconv Utility

See z/OS: XL C/C++ Messages (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5gc147305/$file/cbcdg01_v2r5.pdf) for messages and return codes for the CXXFILT utility.

DSECT Utility Messages

Return Codes
Table 9. Return Codes from the DSECT Utility

Return Code Meaning

0 Successful completion.

4 Successful completion, warnings issued.

8 DSECT Utility failed, error messages issued.

12 DSECT Utility failed, severe error messages issued.

16 DSECT Utility failed, insufficient storage to continue processing.

Messages
The messages issued by the DSECT utility have the format:

EDCnnnn ss text [&n]

nnnn
is the message number.

ss
is the message type (severity):
00

Informational
10 or E

Error warning
30

Error
40

Severe error
text

is the message that appears on the screen.

© Copyright IBM Corp. 2003, 2022 111

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc147305/$file/cbcdg01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc147305/$file/cbcdg01_v2r5.pdf

&n
is a substitution variable, which contains a specific name in the issued message.

EDC5500 10 Option &1 is not valid and is
ignored.

Explanation
The option specified in the message is not valid DSECT
Utility option or a valid option has been specified with
an invalid value. The specified option is ignored.

User response
Rerun the DSECT Utility with the correct option.

EDC5501 30 No DSECT or CSECT names
were found in the SYSADATA file.

Explanation
The SECT option was not specified or SECT(ALL) was
specified. The SYSADATA was searched for all DSECTs
and CSECTs but no DSECTs or CSECTs were found.

User response
Rerun the DSECT Utility with a SYSADATA file that
contains the required DSECT or CSECT definition.

EDC5502 30 Sub option &1 for option &2 is
too long.

Explanation
The sub option specified for the option was too long
and is ignored.

EDC5503 30 Section name &1 was not found
in SYSADATA File.

Explanation
The section name specified with the SECT option
was not found in the External Symbol records in the
SYSADATA file. The C structure is not produced.

User response
Rerun the DSECT Utility with a SYSADATA file that
contains the required DSECT or CSECT definition.

EDC5504 30 Section name &1 is not a DSECT
or CSECT.

Explanation
The section name specified with the SECT option is not
a DSECT or CSECT. Only a DSECT or CSECT names may
be specified. The C structure is not produced.

EDC5505 00 No fields were found for section
&1, structure is not produced.

Explanation
No field records were found in the SYSADATA file that
matched the ESDID of the specified section name. The
C structure is not produced.

EDC5506 30 Record length for file "&1"
is too small for the SEQUENCE
option, option ignored.

Explanation
The record length for the output file specified is too
small to enable the SEQUENCE option to generate the
sequence number in columns 73 to 80. The available
record length must be greater than or equal to 80
characters. The SEQUENCE option is ignored.

EDC5507 40 Insufficient storage to continue
processing.

Explanation
No further storage was available to continue
processing.

User response
Rerun the DSECT Utility with a larger virtual machine
(CMS).

EDC5508 30 Open failed for file "&1": &2

Explanation
This message is issued if the open fails for any
file required by the DSECT Utility. The file name
passed to fopen() and the error message returned by
strerror(errno) is included in the message.

User response
The message text indicates the cause of the error. If
the file name was specified incorrectly on the OUTPUT
option, rerun the DSECT Utility with the correct file
name.

EDC5509 40 &1 failed for file "&2": &3

Explanation
This message is issued if any error occurs reading,
writing or positioning on any file by the DSECT
Utility. The name of the function that failed (Read,

112 XL C/C++ for z/VM: 1.3 User's Guide

Write, fgetpos, fsetpos), file name and text from
strerror(errno) is included in the message.

User response
This message may be issued if an error occurs reading
or writing to a file. This may be caused by an error
within the file, such as an I/O error or insufficient disk
space. Correct the error and rerun the DSECT Utility.

EDC5510 40 Internal Logic error in function
&1

Explanation
The DSECT Utility has detected that an error has
occurred while generating the C structure. Processing
is terminated and the C structure is not produced.

User response
This may be caused by an error in the DSECT Utility or
by incorrect input in the SYSADATA file. Contact your
systems administrator.

EDC5511 10 No matching right parenthesis
for &1 option.

Explanation
The option specified had a sub option beginning with a
left parenthesis but no right parenthesis was present.

User response
Rerun the DSECT Utility with the parenthesis for the
option correctly paired.

EDC5512 10 No matching quote for &1
option.

Explanation
The OUTPUT option has a sub option beginning with a
single quote but no matching quote was found.

User response
Rerun the DSECT Utility with the quotes for the option
correctly paired.

EDC5513 10 Record length too small for file
"&1".

Explanation
The record length for the Output file specified is less
than 10 characters in length. The minimum available
record length must be at least 10 characters.

User response
Rerun the DSECT Utility with an output file with a
available record length of at least 10 characters.

EDC5514 30 Too many sub options were
specified for option &1.

Explanation
More than the maximum number of sub options were
specified for the particular option. The extra sub
options are ignored.

EDC5515 00 HDRSKIP option value greater
than length for section &1,
structure is not produced.

Explanation
The value specified for the HDRSKIP option was
greater than the length of the section. A structure was
not produced for the specified section.

User response
Rerun the DSECT Utility with a smaller value for the
HDRSKIP option.

EDC5516 10 SECT and OPTFILE options
are mutually exclusive, OPTFILE
option is ignored

Explanation
Both the SECT and OPTFILE options were specified,
but the options are mutually exclusive.

User response
Rerun the DSECT Utility with either the SECT or
OPTFILE option.

EDC5517 10 Line &1 from "&2" does not
begin with SECT option

Explanation
The line from the file specified on the OPTFILE option
did not begin with the SECT option. The line was
ignored.

User response
Rerun the DSECT Utility without OPTFILE option, or
correct the line in the input file.

EDC5518 10 setlocale() failed for locale
name "&1".

Appendix E. Utility Messages 113

Explanation
The setlocale() function failed with the locale name
specified on the LOCALE option. The LOCALE option
was ignored.

User response
Rerun the DSECT Utility without LOCALE option, or
correct the locale name specified with the LOCALE
option.

114 XL C/C++ for z/VM: 1.3 User's Guide

Appendix F. Layout of the Events File

This appendix specifies the layout of the SYSEVENT file. The SYSEVENT file contains error information and
source file statistics. Use the EVENTS compiler option to produce the SYSEVENT file. For more information
on the EVENTS compiler option, see “EVENTS | NOEVENTS” on page 26.

In the following example, the source file SIMPLE C is compiled with the EVENTS(EGEVENT FILE)
compiler option. The file ERR H is a header file that is included in SIMPLE C. Figure 37 on page 115 is the
event file that is generated when SIMPLE C is compiled.

1 #include "err.h"
2 main() {
3 add some error messages;
4 return(0);
5 here and there;
6 }

Figure 35. SIMPLE C

1 add some;
2 errors in the header file;

Figure 36. ERR H

------- start simple.events ------
 FILEID 0 1 0 13 'SIMPLE C A1'
 FILEID 0 2 1 8 ERR H A1
 ERROR 0 2 1 0 1 1 1 8 CCN3166 E 12 48 Definition of function add requires parentheses.
 FILEEND 0 2 2
 ERROR 0 2 1 0 1 5 2 8 CCN3276 E 12 35 Syntax error: possible missing '{'?
 ERROR 0 1 1 0 3 4 3 27 CCN3045 E 12 26 Undeclared identifier add.
 ERROR 0 1 1 0 5 9 5 18 CCN3277 E 12 42 Syntax error: possible missing ';' or ','?
 ERROR 0 1 1 0 5 4 5 18 CCN3045 E 12 27 Undeclared identifier here.
 FILEEND 0 1 6
------- end simple.events ------

Figure 37. Sample SYSEVENT file

There are three different record types generated in the event file:

• FILEID
• FILEEND
• ERROR

FILEID Field
The following is an example of the FILEID field from the sample SYSEVENT file that is shown in Figure 37
on page 115. Table 10 on page 116 describes the FILEID identifiers.

 FILEID 0 1 0 13 'SIMPLE C A1'
 A B C D E

© Copyright IBM Corp. 2003, 2022 115

Table 10. Explanation of the FILEID Field Layout

Column Identifier Description

A Revision Revision number of the event record.

B File number Increments starting with 1 for the primary file.

C Line number The line number of the #include directive. For the primary
source file, this value is 0.

D File name length Length of file or data set.

E File name String containing file/data set name.

FILEEND Field
The following is an example of the FILEEND field from the sample SYSEVENT file that is shown in Figure
37 on page 115. Table 11 on page 116 describes the FILEEND identifiers.

 FILEEND 0 1 6
 A B C

Table 11. Explanation of the FILEEND Field Layout

Column Identifier Description

A Revision Revision number of the event record.

B File number File number that has been processed to end of file.

C Expansion Total number of lines in the file.

ERROR Field
The following is an example of the ERROR field from the sample SYSEVENT file that is shown in Figure 37
on page 115. Table 12 on page 116 describes the ERROR identifiers.

 ERROR 0 1 1 0 3 4 3 27 CCN3045 E 12 26 Undeclared identifier add.
 A B C D E F G H I J K L M

Table 12. Explanation of the ERROR Field Layout

Column Identifier Description

A Revision Revision number of the event record.

B File number Increments starting with 1 for the primary file.

C Reserved Do not build a dependency on this identifier. It is reserved for
future use.

D Reserved Do not build a dependency on this identifier. It is reserved for
future use.

E Starting line number The source line number for which the message was issued. A
value of 0 indicates the message was not associated with a line
number.

F Starting column number The column number or position within the source line for which
the message was issued. A value of 0 indicates the message is not
associated with a line number.

116 XL C/C++ for z/VM: 1.3 User's Guide

Table 12. Explanation of the ERROR Field Layout (continued)

Column Identifier Description

G Reserved Do not build a dependency on this identifier. It is reserved for
future use.

H Reserved Do not build a dependency on this identifier. It is reserved for
future use.

I Message identifier String Containing the message identifier.

J Message severity character I=Informational W=Warning E=Error S=Severe U=Unrecoverable

K Message severity number Return code associated with the message.

L Message length Length of message text.

M Message text String containing message text.

Appendix F. Layout of the Events File 117

118 XL C/C++ for z/VM: 1.3 User's Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2003, 2022 119

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of IBM XL C/C++ for z/VM and IBM z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

Adobe is either a registered trademark or a trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

120 XL C/C++ for z/VM: 1.3 User's Guide

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 121

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

122 XL C/C++ for z/VM: 1.3 User's Guide

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 2003, 2022 123

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

124 XL C/C++ for z/VM: 1.3 User's Guide

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 125

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

126 XL C/C++ for z/VM: 1.3 User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Bibliography 127

128 XL C/C++ for z/VM: 1.3 User's Guide

Index

A
absolute file names 49
application programs

using makefiles to maintain 102
ar utility

creating archive libraries 101
maintaining program objects 101

ARCHITECTURE compiler option 23
archive libraries

ar utility 101
creating 101
displaying the object files in 101
file naming convention for c89/cxx use
101

assembler
generation of C structures 90

B
BFS files

definition xi
BFS input files, compiler 43
binder, interface to c89/cxx utility 69
BITF0XL DSECT utility option 84
BLKSIZE DSECT utility option 90

C
C++ compiler listing 33
C370LIB

directory 73
EXEC

FILENAME option 74
syntax of 73

c89/cxx utility 69
CC EXEC

error messages returned by 107
specifying BFS input file 43
specifying CMS input file 42
specifying compiler options 44
syntax 41

CCNnnnn messages 105
CCNUTL001I 107
CCNUTL002E 107
CCNUTL003W 107
CCNUTL004W 107
CCNUTL005E 107
CCNUTL006E 108
CCNUTL008E 108
CCNUTL009E 108
CCNUTLnnnx messages 107
CDSECT EXEC 83
CEEBINT HLL user exit, using to set emsg 64
CEEUOPT CSECT, creating 70
CEEXOPT macro 70
CLASSNAME filter utility option 80

CMOD EXEC
examples 59
options 57

CMS files
definition xi

CMS input files, compiler 42
code set conversion utilities

genxlt
usage 95

iconv
usage 95

command line parameter string 63
COMMENT DSECT utility option 85
compiler

C compiler listing 33
c89/cxx utility interface to
65
error messages 105
input 42
output 45
return codes 105

compiler options
compiler options

#pragma options 21
overriding defaults 21

defaults 21
operational differences

ARCHITECTURE 23
CSECT/NOCSECT 23
DEBUG/NODEBUG 24
ENUMSIZE 25
EVENTS/NOEVENTS 26
INLPRT/NOINLPRT 26
LIST/NOLIST 27
LSEARCH/NOLSEARCH 27
OBJECT/NOOBJECT 29
OPTFILE/NOOPTFILE 30
PPONLY/NOPPONLY 31
SEARCH/NOSEARCH 32
SOURCE/NOSOURCE 32

unsupported 22
compiling and binding using c89/cxx 66
compiling and binding using make 67
constructed reentrancy 62
conventions

default names in XL C/C++
xi

CSECT (control section)
CEEUOPT 70
compiler option 23

CSECT compiler option 23
CXXFILT EXEC

CLASSNAME option 80
error messages 111
REGULARNAME option 80
running under VM/CMS
80

Index 129

CXXFILT EXEC (continued)
SIDEBYSIDE option 80
SPECIALNAME option 80
SYMMAP option 79
unknown type of name 80
using 79
WIDTH option 80

D
DCSS (discontiguous saved segment) 41
ddname

definition xi
include files 49

DEBUG compiler option 24
default, overriding compiler options 21
DEFSUB DSECT utility option 85
disk search sequence

include files 52
LSEARCH compiler option 27
SEARCH compiler option 32

DSECT utility
BITF0XL option 84
BLKSIZE option 90
COMMENT option 85
DEFSUB option 85
EQUATE option 86
error messages 111
HDRSKIP option 88
INDENT option 88
LOCALE option 88
LOWERCASE option 88
LRECL option 90
OPTFILE option 89
OUTPUT option 90
PPCOND option 89
RECFM option 90
SECT option 84
SEQUENCE option 89
structure produced 90
UNNAMED option 89

E
EDC5500 112
EDC5501 112
EDC5502 112
EDC5503 112
EDC5504 112
EDC5505 112
EDC5506 112
EDC5507 112
EDC5508 112
EDC5509 112
EDC5510 113
EDC5511 113
EDC5512 113
EDC5513 113
EDC5514 113
EDC5515 113
EDC5516 113
EDC5517 113
EDC5518 113

emsg messages 64
ENUMSIZE compiler option 25
EQUATE DSECT utility option 86
error messages

compiler 105
DSECT utility 111
EXEC 107
filter utility (CXXFILT) 111
genxlt utility 111
iconv utility 111
localedef utility 111
Object Library Utility 111
redirecting 46
runtime 109

EVENTS compiler option 26
Events file 45, 115
examples

machine-readable 5
naming of 5
softcopy 5

EXEC
C370LIB 73
CC 41
CDSECT 83
CMOD 56
CXXFILT 79
error messages 107
GENXLT 96
ICONV 95
LOCALDEF 97

EXECs
supplied by IBM 103

executable
files

placing CMS load modules in the BFS 70
running CMS modules from the shell 71
running, from the shell 71

modules, creating 55

F
feature test macro 37
FILEDEF

definition xi
filename

definition xi
files

executable 55, 71
names

absolute 49
include files 48

filter utility (CXXFILT)
CLASSNAME option 80
error messages 111
REGULARNAME option 80
running under VM/CMS
80
SIDEBYSIDE option 80
SPECIALNAME option 80
SYMMAP option 79
unknown type of name 80
using 79
WIDTH option 80

functions

130 XL C/C++ for z/VM: 1.3 User's Guide

functions (continued)
code set conversion 95

G
GENMOD command 59
GENXLT EXEC 96
genxlt utility

error messages 111
usage 95

GLOBAL command 41

H
HDRSKIP DSECT utility option 88

I
IBM-supplied EXECs 103
ICONV EXEC 95
iconv utility

error messages 111
usage 95

include files
naming 48
preprocessor directive 47
record format 47
system files and libraries

SEARCH compiler option 32
searching for 52
using 47

user files and libraries
LSEARCH compiler option 27
searching for 52
using 47

INDENT DSECT utility option 88
INLRPT compiler option 26
input

compiler 42
source files 45

L
library

archive
creating 101
displaying the object files in 101
file naming convention for c89/cxx use
101
searching for objects by c89/cxx 101

availability at run time 63
Language Environment

compiler 41
components 55
runtime 41

making available to the compiler 41
search sequence

for include files 52
with LSEARCH compiler option 27
with SEARCH compiler option 32

LINKLOAD EXEC
options 75

LIST compiler option 27

LKED command 61
LOAD command 59
load module, creating 55
LOCALDEF EXEC 97
LOCALE DSECT utility option 88
localedef utility

error messages 97, 111
LOWERCASE DSECT utility option 88
LRECL DSECT utility option 90
LSEARCH compiler option 27

M
macros, feature test 37
maintaining objects in an archive library 101
maintaining programs with make using c89/cxx 67
make utility

compiling and binding application programs 67
creating makefiles 102
maintaining C/C++ application programs 102

makefiles
creating 102
maintaining application programs 102

mangled name filter utility 79
map heading 76
math considerations 56
member heading 76
message examples, notation used in xiv
messages

compiler, list of 105
returned by XL C/C++ EXECs
107
runtime 109

N
naming, object library members 74
natural reentrancy 62
NOCSECT compiler option 23
NODEBUG compiler option 24
NOEVENTS compiler option 26
NOINLRPT compiler option 26
NOLIST compiler option 27
NOLSEARCH compiler option 27
NOOBJECT compiler option 29
NOOPTFILE compiler option 30
NOPPONLY compiler option 31
NOSEARCH compiler option 32
NOSOURCE compiler option 32
notation used in message and response examples xiv
nucleus extension

compiler location 41
program installation in 62

NUCXLOAD command 62

O
object

code 41
compiler option 29
library

adding object modules 73
deleting object modules 73

Index 131

object (continued)
library (continued)

example 74
listing the contents 73

OBJECT compiler option 29
Object Library Utility

long name support 73
map 75
messages 111

OpenExtensions
binding using c89/cxx 69
compiling and binding using c89/cxx 66
compiling and binding using make 67
maintaining objects in an archive library 101
maintaining programs through makefiles 102
placing CMS load modules in the BFS 70
running 70
specifying runtime options for 70

OPTFILE compiler option 30
OPTFILE DSECT utility option 89
output

compiler 45
OUTPUT DSECT utility option 90

P
passing arguments 39
PATHDEF

definition xi
perror messages 109
POSIX

function call from non-POSIX function 4
making use of 4

PPCOND DSECT utility option 89
PPONLY compiler option 31
Preprocessor output 45
primary input

specifying to the compiler 42
program module

definition xi
programs

using makefiles to maintain 102

R
RECFM DSECT utility option 90
redirecting error messages 46
reentrancy 61
REGULARNAME filter utility option 80
response examples, notation used in xiv
return codes

compiler 105
DSECT utility 111
genxlt utility 111
iconv utility 111
localdef utility 111
Object Library Utility 111

run time
error messages 109
return codes 109

running programs
from the shell 71
OpenExtensions application 71

running programs (continued)
VM/CMS

example 62, 63
with the START command 62

S
sample program

C source 7
C++ source 11
C++ template source 16

SEARCH compiler option 32
search sequence

include files 52
library files 63

SECT DSECT utility option 84
SEQUENCE DSECT utility option 89
shared programs 61
shell

compiling and binding within
using the c89/cxx utility
65

invoking load modules 71
running programs 71

SIDEBYSIDE filter utility option 80
SOURCE compiler option 32
SPECIALNAME filter utility option 80
START command 62
stub routine

in Language Environment 55
symbol information 77
SYMMAP filter utility option 79
syntax diagrams, how to read xii

T
template program example 16
trademarks 120
TXTLIB

command 73
creating 73

U
UNNAMED DSECT utility option 89
user

include files
LSEARCH compiler option 27
searching for 52
specifying with #include directive 48

user comments 77
utilities

OpenExtensions 101
XL C/C++ 73

V
VM/CMS

executable
module 59
program 59

GENMOD command 60
LOAD command 60

132 XL C/C++ for z/VM: 1.3 User's Guide

VM/CMS (continued)
messages 64
running a program 62
VM/CMS

compiling 41

W
WIDTH filter utility option 80
writable static 62

Index 133

134 XL C/C++ for z/VM: 1.3 User's Guide

IBM®

Product Number: 5654-A22

Printed in USA

SC09-7625-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Conventions and Terminology
	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for XL C/C++ for z/VM: User's Guide
	SC09-7625-73, XL C/C++ for z/VM, 1.3 (September 2022)
	SC09-7625-02, XL C/C++ for z/VM, 1.3 (September 2020)
	SC09-7625-02, XL C/C++ for z/VM, 1.3 (September 2018)

	Chapter 1. About XL C/C++ for z/VM
	Differences between XL C/C++ for z/VM and z/OS XL C/C++
	The C Language
	The C++ Language
	Common Features of the C and C++ Compilers
	Class Library
	Utilities
	Language Environment
	z/VM OpenExtensions
	OpenExtensions Services
	Applications with OpenExtensions Services
	Applications with OpenExtensions Interoperability

	Softcopy Examples

	Chapter 2. C Example
	Example of a C Program
	CCNUAAM
	CCNUAAN

	Compiling, Binding, and Running the C Example
	Non-XPLINK and XPLINK under CMS
	Non-XPLINK and XPLINK under the OpenExtensions Shell

	Chapter 3. C++ Examples
	Example of a C++ Program
	CCNUBRH
	CCNUBRC

	Compiling, Binding, and Running the C++ Example
	Non-XPLINK and XPLINK under CMS
	Non-XPLINK and XPLINK under the OpenExtensions Shell

	Example of a C++ Template Program
	CCNUTMP

	Compiling, Binding, and Running the C++ Template Example
	Under CMS
	Under the OpenExtensions Shell

	Chapter 4. Compiler Options
	Specifying Compiler Options
	Specifying Compiler Options Using #pragma options

	Compiler Option Defaults
	Summary of Compiler Options
	Descriptions of Compiler Options
	Unsupported Compiler Options
	Compiler Options with Operational Differences
	ARCHITECTURE
	CSECT | NOCSECT
	DEBUG | NODEBUG
	ENUMSIZE
	EVENTS | NOEVENTS
	INLRPT | NOINLRPT
	LIST | NOLIST
	LSEARCH | NOLSEARCH
	Specifying Byte File System (BFS) Files

	OBJECT | NOOBJECT
	OPTFILE | NOOPTFILE
	PPONLY | NOPPONLY
	SEARCH | NOSEARCH
	SOURCE | NOSOURCE

	Using the C Compiler Listing
	Using the C++ Compiler Listing

	Chapter 5. Compiler Options under OpenExtensions
	Specifying Compiler Options Using c89/cxx
	c89/cxx Default Compiler Settings
	c89 Selectable Compiler Settings
	Format
	Description

	Feature Test Macros

	Chapter 6. Runtime Options
	Specifying Runtime Options
	Runtime Options Using Language Environment

	Chapter 7. Compiling a C/C++ Program
	Invoking the XL C/C++ Compiler
	GLOBAL Command for Using the Language Environment Library
	Syntax of the CC EXEC
	Specifying the Input File
	CMS Record Files
	BFS Files

	Specifying Compiler Options
	CMS Record File Examples
	BFS File Example

	Creating Input Source Files
	Specifying Output Files
	Valid Input/Output File Types
	Using Include Files
	Specifying #include File Names

	Determining If filename Is In Absolute Form
	Using LSEARCH and SEARCH

	Search Sequences for Include Files
	With the NOOE option in effect
	With the OE option in effect

	Chapter 8. Binding and Running a C/C++ Program
	Library Routine Considerations
	Creating an Executable Program
	Language Environment Sidedeck Files and TXTLIBs
	CMOD Options
	Examples

	Using the LOAD and GENMOD Commands
	Using the BIND Command
	Using the LKED Command
	Using FILEDEF to Define Input and Output Files
	Preparing a Reentrant Program
	Linking Modules for Interlanguage Calls
	Running a Program
	Making the Runtime Libraries Available for Execution
	Making the Language Environment Library Available for VM/CMS
	Search Sequence for Library Files

	Specifying Runtime Options
	Message Handling

	Chapter 9. Compiling a C/C++ Program under OpenExtensions
	Compiling with c89/cxx
	Compiler Selection

	Compiling and Building in One Step with c89/cxx
	Using the make Utility

	Chapter 10. Binding and Running a C/C++ Program under OpenExtensions
	Using the c89 Utility to Bind and Create Executable Files
	c89 Binder Options
	Binder Options

	Specifying Runtime Options under OpenExtensions
	Running under OpenExtensions
	OpenExtensions Application Program Environments
	Placing a CMS Application Program Load Module in the File System
	Running a CMS Module from the OpenExtensions Shell
	Running an OpenExtensions XL C/C++ Application Executable File from the OpenExtensions Shell
	Issuing the Executable Filename from the Shell
	Issuing a Setup Shell Script Filename from the Shell

	Chapter 11. Object Library Utility
	Creating an Object Library under VM/CMS
	LINKLOAD EXEC

	Object Library Utility Map

	Chapter 12. Filter Utility
	CXXFILT Options
	SYMMAP | NOSYMMAP
	SIDEBYSIDE | NOSIDEBYSIDE
	WIDTH(width) | NOWIDTH
	REGULARNAME | NOREGULARNAME
	CLASSNAME | NOCLASSNAME
	SPECIALNAME | NOSPECIALNAME
	Unknown Type of Name

	Running CXXFILT under VM/CMS

	Chapter 13. DSECT Conversion Utility
	DSECT Utility Options
	SECT
	BITF0XL | NOBITF0XL
	COMMENT | NOCOMMENT
	DEFSUB | NODEFSUB
	EQUATE | NOEQUATE
	HDRSKIP | NOHDRSKIP
	INDENT | NOINDENT
	LOCALE | NOLOCALE
	LOWERCASE | NOLOWERCASE
	OPTFILE | NOOPTFILE
	PPCOND | NOPPCOND
	SEQUENCE | NOSEQUENCE
	UNNAMED | NOUNNAMED
	OUTPUT
	RECFM
	LRECL
	BLKSIZE

	Generation of C Structures

	Chapter 14. Code Set and Locale Utilities
	Code Set Conversion Utilities
	iconv Utility
	genxlt Utility

	localedef Utility

	Chapter 15. OpenExtensions ar and make Utlities
	OpenExtensions Archive Libraries
	Creating Archive Libraries
	Creating Makefiles

	Appendix A. IBM-Supplied EXECs
	Appendix B. XL C/C++ Compiler Return Codes and Messages
	Appendix C. EXEC Error Messages
	Appendix D. Runtime Error Messages and Return Codes
	perror Messages
	XL C/C++ Runtime Return Codes

	Appendix E. Utility Messages
	DSECT Utility Messages
	Return Codes
	Messages

	Appendix F. Layout of the Events File
	FILEID Field
	FILEEND Field
	ERROR Field

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

